Рефераты. Жидкие кристаллы как основа развития современных технологий






Жидкие кристаллы как основа развития современных технологий

Министерство образования и науки Самарской губернии

ГОУ СПО Самарский приборостроительный техникум







Дневное отделение

Специальность 1910

Радиоэлектронные приборные  устройства

РЕФЕРАТ

 

на тему: «ЖИДКИЕ КРИСТАЛЛЫ - КАК ОСНОВА РАЗВИТИЯ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ» 


Выполнил:

 студент группы Р-62

Вильмас Ю.Г.


Руководитель:

Решеткова Е.А.


Самара  2005  г.

План

Введение. 3

1.  Открытие жидких кристаллов. 4

1.1.  Четвертое агрегатное состояние вещества - мегафаза. 4

1.2.  Явление двупреломления. 6

1.3.  Необычные свойства жидких кристаллов. 7

1.3.  Флексоэлектрический эффект. 13

2.  Сфера применения жидких кристаллов. 16

2.1.  Дисплеи на жидких кристаллах. 16

2.2.  Изготовление интегральных схем. 18

2.3.  Жидкокристаллический перстень. 19

2.4.    Жидкокристаллические телевизоры.. 20

3.  О будущих применениях жидких кристаллов. 22

3.1.  Перспективы применения жидких кристаллов. 22

3.7.    Управляемые оптические транспаранты.. 22

3.7.    Пространственно-временные модуляторы света. 24

3.4.  Оптический микрофон. 26

3.7.    Жидкокристаллические волноводы.. 27

3.5.  Стереотелевизор. 29

3.7.    Очки для космонавтов. 30

3.7.    Жидкокристаллические фильтры.. 32

Заключение. 33

Литература. 34

Введение

Всё чаще мы стали встречаться с термином «жидкие кристаллы».

Мы общаемся с ними, и они играют немаловажную роль в нашей жизни. Многие современные приборы и устройства работают на них. К таким относятся часы, термометры, дисплеи, мониторы и прочие устройства.

Что же это за вещества с та­ким парадоксальным названием «жидкие кристаллы» и почему к ним проявляется столь значительный интерес?

 В наше время наука стала производительной силой, и поэтому, как правило, повышенный научный интерес к тому или иному явлению или объекту означает, что это явление или объект представляет интерес для материаль­ного производства.

 В этом отношении не являются ис­ключением и жидкие кристаллы. Интерес к ним, прежде всего, обусловлен возможностями их эффективного при­менения в ряде отраслей производственной деятельно­сти.

Внедрение жидких кристаллов означает экономиче­скую эффективность, простоту, удобство.

1.  Открытие жидких кристаллов

1.1.  Четвертое агрегатное состояние вещества - мегафаза

Жидкий кристалл – это специфическое агрегатное со­стояние вещества, в котором оно проявляет одновре­менно свойства кристалла и жидкости. Сразу надо огово­риться, что далеко не все вещества могут находиться в жидкокристаллическом состоянии. Большинство веществ может находиться только в трех, всем хорошо известных агрегатных состояниях: твердом или кристаллическом, жидком и газообразном.

   Оказывается,   некоторые органические вещества, обладающие сложными молеку­лами, кроме трех названных состояний, могут образовы­вать четвертое агрегатное состояние — жидкокристалли­ческое.  Это состояние осуществляется при плавлении кристаллов некоторых веществ. При их плавлении обра­зуется жидкокристаллическая фаза,  отличающаяся от обычных жидкостей. Эта фаза существует в интервале от температуры плавления кристалла до некоторой более высокой температуры, при нагреве до которой жидкий кристалл переходит в обычную жидкость.

Чем же жидкий кристалл  отличается от жидкости и обычного кристалла и чем похож на них? Подобно обычной жидкости, жидкий кристалл обладает текучестью и принимает форму сосуда, в который он помещен. Этим он отличается от известных всем кристаллов. Однако, несмотря на это свойство, объединяющее его с жид­костью, он обладает свойством, характерным для кри­сталлов. Это - упорядочение в пространстве молекул, образующих кристалл. Правда, это упорядочение не та­кое полное, как в обычных кристаллах, но, тем не менее, оно существенно влияет на свойства жидких кристаллов, чем и отличает их от обычных жидкостей. Неполное про­странственное упорядочение молекул, образующих жид­кий кристалл, проявляется в том, что в жидких кристал­лах нет полного порядка в пространственном располо­жении центров тяжести молекул, хотя частичный порядок может быть. Это означает, что у них нет жесткой кри­сталлической решетки. Поэтому жидкие кристаллы, по­добно обычным жидкостям, обладают свойством текуче­сти.

Обязательным свойством жидких кристаллов, сбли­жающим их с обычными кристаллами, является наличие порядка пространственной ориентации молекул. Такой порядок в ориентации может проявляться, например, в том, что все длинные оси молекул в жидкокристалличе­ском образце ориентированы одинаково. Эти молекулы должны обладать вытянутой формой. Кроме простейше­го названного упорядочения осей молекул, в жидком кристалле может осуществляться более сложный ориентационный порядок молекул.

В зависимости от вида упорядочения осей молекул жидкие кристаллы разделяются на три разновидности: нематические, смектические и холестерические.

Исследования по физике жидких кристаллов и их при­менениям в настоящее время ведутся широким фрон­том во всех наиболее развитых странах мира. Отечествен­ные исследования сосредоточены как в академических, так и отраслевых научно-исследовательских учреждени­ях и имеют давние традиции. Широкую известность и признание получили выполненные еще в тридцатые годы в Ленинграде работы В.К. Фредерикса к В.Н. Цветкова. В последние годы бурного изучения жидких кристаллов отечественные исследователи также вносят весомый вклад в развитие учения о жидких кристаллах в целом и, в частности, об оптике жидких кристаллов. Так, работы И.Г. Чистякова, А.П. Капустина, С.А. Бразовского, С.А. Пикина, Л.М. Блинова и многих других советских иссле­дователей широко известны научной общественности и служат фундаментом ряда эффективных технических приложений жидких кристаллов.

Существование жидких кристаллов было установлено очень давно, а именно в 1888 году, то есть почти столетие назад. Хотя учёные и до 1888 года сталкивались с данным состоянием вещества, но официально его открыли позже.

            Первым, кто обнаружил жидкие кристаллы, был авст­рийский ученый-ботаник Рейнитцер. Исследуя новое син­тезированное им вещество холестерилбензоат, он обна­ружил, что при температуре 145°С кристаллы этого ве­щества плавятся, образуя мутную сильно рассеивающую свет жидкость. При продолжении нагрева по достижении температуры 179°С жидкость просветляется, т. е. начина­ет вести себя в оптическом отношении, как обычная жидкость, например вода. Неожиданные свойства холестерилбензоат обнаруживал в мутной фазе. Рассматри­вая эту фазу под поляризационным микроскопом, Рей­нитцер обнаружил, что она обладает двупреломлением. Это означает, что показатель преломления света, т. е скорость света е этой фазе, зависит от поляризации.

1.2.  Явление двупреломления

Явление двупреломления - это типично кристалличе­ский эффект, состоящий в том, что скорость света в кри­сталле зависит от ориентации плоскости поляризации света. Существенно, что она достигает экстремального максимального и минимального значений для двух вза­имно ортогональных ориентаций плоскости поляризации. Разумеется, ориентации поляризации, соответствующие экстремальным значениям скорости свете в кристалле, определяются анизотропией свойств кристалла и одно­значно задаются ориентацией кристаллических осей отно­сительно направления распространения света.

            Поэтому сказанное поясняет, что существование дву­преломления в жидкости, которая должна быть изотроп­ной, т. е. что ее свойства должны быть независящими от направления, представлялось парадоксальным. Наиболее правдоподобным в то время могло казаться наличие в мутной фазе нерасплавившихся малых частичек кристалла, кристаллитов, которые и являлись источником двупреломления. Однако более детальные исследования, к которым Рейнитцер привлек известного немецкого фи­зика Леймана, показали, что мутная фаза не является двух­фазной системой, т. е. не содержит в обычной жидкости кристаллических включений, а является новым фазовым состоянием вещества. Этому фазовому состоянию Лейман дал название «жидкий кристалл» в связи с одновре­менно проявляемыми им свойствами жидкости и кристал­ла. Употребляется также и другой термин для названия жидких кристаллов. Это - «мезофаза», что буквально означает «промежуточная фаза».

            В то время существование жидких кристаллов пред­ставлялось каким-то курьезом, и никто не мог предполо­жить, что их ожидает почти через сто лет большое буду­щее в технических приложениях. Поэтому после некото­рого интереса к жидким кристаллам сразу после их от­крытия о них через некоторое время практически за­были.

Тем не менее, уже в первые годы были выяснены мно­гие другие удивительные свойства жидких кристаллов. Так, некоторые виды жидких кристаллов обладали не­обычно высокой оптической активностью.

1.3.  Необычные свойства жидких кристаллов

            Оптической активностью называют способность неко­торых веществ вращать плоскость поляризации проходя­щего через них света. Это означает, что линейно поля­ризованный свет, распространяясь в таких средах, изме­няет ориентацию плоскости поляризации. Причем угол поворота плоскости поляризации прямо пропорционален пути, пройденному светом.

Так, в твердых телах, как, впрочем, и в обычных жид­костях, удельная вращательная способность Ра имеет вполне определенный, независящий от длины волны све­та знак. Это означает, что вращение плоскости поляри­зации света в них происходит в определенном направле­нии. Против часовой стрелки при положительном фа  и по часовой стрелке при отрицательном Ра. При этом подра­зумевается, что наблюдение за вращением плоскости по­ляризации осуществляется вдоль направления распрост­ранения света. Поэтому все оптически активные веще­ства подразделяются на правовращающие (если враще­ние происходит по часовой стрелке) и левовращающие (если вращение происходит против часовой стрелки).

В случае оптически активных жидких кристаллов та­кая классификация сталкивалась с трудностями. Дело в том, что направление (знак) вращения в жидких кристал­лах зависело от длины волн света. Для коротких длин волн величина Ра, например, могла быть положи­тельной, а для более длинноволнового света - отрица­тельной. А могло быть и наоборот. Однако характерным для всех случаев было изменение знака вращения плос­кости поляризации в зависимости от длины волны света, или, как говорят, инверсия знака оптической активности. Такое поведение вращения плоскости поляризации со­вершенно не укладывалось в рамки существовавших представлений об оптической активности.

Удивительными были также и другие свойства, такие, как сильная температурная зависимость названных ха­рактеристик, их очень высокая чувствительность к внеш­ним магнитным и электрическим полям и так далее. Но прежде чем пытаться объяснить перечисленные свойства, необ­ходимо понять, как устроены жидкие кристаллы, и, в частности, ознакомиться с их структурными свойствами, ибо в конечном итоге для объяснения описанных свойств наиболее существенными оказываются именно структур­ные характеристики жидких кристаллов.

Здесь следует заметить, что в конце девятнадцатого - начале двадцатого века многие очень авторитетные учёные весьма скептически относились к открытию Рейнитцера и Лемана. (Имя Лемана также можно по праву свя­зывать с открытием жидких кристаллов, поскольку он очень активно участвовал в первых исследованиях жидких кристаллов, и даже самим термином «жидкие кри­сталлы» мы обязаны именно ему.) Дело в том, что не только описанные противоречивые свойства жидких кри­сталлов представлялись многим авторитетам весьма со­мнительными, но и в том, что свойства различных жидко­кристаллических веществ (соединений, обладавших жид­кокристаллической фазой) оказывались существенно различными. Так, одни жидкие кристаллы обладали очень большой вязкостью, у других вязкость была невелика. Одни жидкие кристаллы проявляли с изменением тем­пературы резкое изменение окраски, так что их цвет пробегал все тона радуги, другие жидкие кристаллы та­кого резкого изменения окраски не проявляли. Наконец, внешний вид образцов, или, как принято говорить, тек­стура,  различных жидких кристаллов при рассматрива­нии их под микроскопом оказывался совсем различным. В одном случае в поле поляризационного микроскопа могли быть видны образования, похожие на нити, в дру­гом - наблюдались изображения, похожие на горный рельеф, а в третьем - картина напоминала отпечатки пальцев. Стоял также вопрос, почему жидкокристаллическая фаза  наблюдается при плавлении только некоторых веществ?

  Время шло, факты о жидких кристаллах постепенно накапливались, но не было общего принципа, который позволил бы установить какую-то систему в представле­ниях о жидких кристаллах. Со временем ученые подошли к проведению классификации предмета исследований. Заслуга в создании основ современной классификации жидких кри­сталлов принадлежит французскому ученому Ж. Фриделю.

В двадцатые годы Фридель предложил разделить все жидкие кристаллы на две большие группы. Одну группу жидких кристаллов Фридель назвал нематическими, дру­гую смектическими. Он же пред­ложил общий термин для жидких кристаллов - «мезо морфная фаза». Этот термин происходит от греческого слова «мезос» (промежуточный), а вводя его, Фридель хотел подчеркнуть, что жидкие кристаллы занимают про­межуточное положение между истинными кристаллами и жидкостями как по температуре, так и по своим физи­ческим свойствам.

Нематические жидкие кристаллы в классификации Фриделя включали уже упоминавшиеся выше холестерические жидкие кристаллы как подкласс. Когда классификация жидких кристаллов была созда­на, более остро встал вопрос: почему в природе реализу­ется жидкокристаллическое состояние? Полным ответом на подобный вопрос принято считать создание микроско­пической теории. Но в то время на такую теорию не при­ходилось и надеяться (кстати, последовательной микро­скопической теории жидких кристаллов  не существует и по сей день), поэтому большим шагом вперед было создание чешским ученым X. Цохером и голландцем С. Озерном феноме­нологической теории жидких кристаллов, или, как ее при­нято называть, теории упругости жидких кристаллов.

В 30-х годах в СССР В.К. Фредерике и В.Н. Цветков первыми изучили не­обычные электрические свойства жидких кристаллов. Можно условно считать, что рассказанное выше отно­силось к предыстории жидких кристаллов, ко времени, когда исследования жидких кристаллов велись малочисленными коллек­тивами.

 Современный этап изучения жидких кристаллов, который начался в 60-е годы и придал науке о жидких кристаллах сегод­няшние формы, методы исследований, широкий размах работ сформировался под непосредственным влиянием успехов в технических приложениях жидких кристаллов, особенно в системах отображения информации. В это время было понято и практически доказано, что в наш век микроэлектроники, характеризующийся внедрением микроминиатюрных электронных устройств, потребляю­щих ничтожные мощности энергии для устройств инди­кации информации, т. е. связи прибора с человеком, наи­более подходящими оказываются индикаторы на жидких кристаллах.

Дело в том, что такие устройства отображения инфор­мации на ЖК естественным образом вписываются в энер­гетику и габариты микроэлектронных схем. Они потреб­ляют ничтожные мощности и могут быть выполнены в виде миниатюрных индикаторов или плоских экранов. Все это предопределяет массовое внедрение жидкокристал­лических индикаторов в системы отображения информа­ции, свидетелями которого мы являемся в настоящее время.

Чтобы осознать этот процесс, достаточно вспом­нить о часах или микрокалькуляторах с жидкокристалли­ческими индикаторами. Но это только начало. На смену традиционным и привычным устройствам идут жидко­кристаллические системы отображения информации. Так часто бывает, технические потребности не только стимулируют разработку проблем, связанных с практи­ческими приложениями, но и часто заставляют переос­мыслить общее отношение к соответствующему разделу науки. Так произошло и с жидкими кристаллами. Сейчас понятно, что это важнейший раздел физики конденсиро­ванного состояния.

Другим важным обстоятельством является то, что проводимость в жидких кристаллах носит ионный харак­тер. Это означает, что ответственными за перенос элек­трического тока в жидких кристаллах являются не электроны, как в ме­таллах, а гораздо более массивные частицы. Это поло­жительно и отрицательно заряженные фрагменты моле­кул (или сами молекулы), отдавшие или захватившие из­быточный электрон. По этой причине электропроводность жидких кристаллов сильно зависит от количества и хими­ческой природы содержащихся в них примесей. В част­ности, электропроводность нематика можно целена­правленно изменять, добавляя в него контролируемое количество ионных добавок, в качестве которых могут выступать некоторые соли.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.