Рефераты. Изучение возможности применения магнитных жидкостей для синтеза магнитных сорбентов






Раствор в колбе титровался 0,1н раствором Na2S2O3, в качестве индикатора использовался крахмал. Параллельно проводился контрольный опыт. 1мл 0,1н раствора Na2S2O3 соответствует 0,005585г Fe3+.


2.3.3. Определение содержания Fe/II/ и Fe/III/ в осадке, образующемся при соосаждении гидроксидов при помощи количественного анализа.[81, 82]

К 1г осадка, просушенного на воздухе при комнатной температуре или отжатого на фильтровальной бумаге, прибавлялось последовательно 2мл концентрированной HCl, 10мл воды, 0,5 мл концентрированной H2SO4, 4мл 5%-ного раствора MnSO4, а для определения Fe/II/ еще и 1мл концентрированной H3PO4. После растворения осадка раствор для определения Fe/II/ титровался 0,1н раствором KMnO4 до появления розовой окраски; к раствору для определения Fe/III/ добавлялось 2г твердого KJ и он оттитровывался 0,1н раствором Na2S2O3 с использованием крахмала в качестве индикатора.

Таким же образом анализировались образцы, стабилизированные минеральными кислотами.


2.3.4. Упрощенный метод определения поверхности по адсорбции воздуха.[84]

Рис.8. Прибор для определения удельной поверхности.


Прибор для определения удельной поверхности (рис.8) состоит из ртутного манометра 1 со шкалой, длина которого больше 80 см. Одна трубка манометра запаивается под вакуумом, а к другой присоединяется на шлифе ампула 2 с навеской образца. Трубка между шлифом и ампулой заключена в вакуумную рубашку 3, которая позволяет поддерживать постоянным охлаж­даемый объем при погружении ампулы в жидкий азот. От трубки, соединяющей ампулу с манометром, сделан отвод с трехходовым краном 4. Вторая трубка от крана сообщается с атмосферой, а к третьей присоединена на шлифе ампула 5, содержащая несколько граммов актив­ного угля.

Для определения удельной поверхности навеска образца помещается в ампулу, которая присоединяется к прибору. Ампула с углем соединяется с манометром и погружается в жидкий азот. После того, как весь воз­дух из прибора адсорбируется на угле, жидкий азот убирается и начинается десорбция газов в объем. Когда давление в манометре достигает 100—250 мм, поворо­том крана ампула с углем отключается от манометра и соединяется с  атмосферой.  Давление  газа  в  манометре измеряется по шкале  с точностью ±0.5 мм. Ампула с образцом погружается в жидкий азот и через несколько минут определяется новое установившееся давление. Поверхность образца определяется по формуле:

, где

S – удельная поверхность,

Δp = p0 - p1

Δp0 = a0 + b0p1 (определяется по коллибровочному графику)

p0 и p1 – показания манометра до и после адсорбции на образце.

a, a0, b, b0, S0 – константы прибора.

Измерение адсорбции предлагаемым упрошенным методом связано с некоторыми допущениями, вносящими ошибки. Не учитывается изменение температуры жидкого азота; расчет поверхности проводится в предположении, что адсорбируется чистый азот. Между тем в воздухе неизбежно присутствует кислород. Поверх­ность измеряется без предварительной откачки образцов. Во многих случаях это не  имеет значения, но для некоторых веществ требуется предварительный прогрев образцов для удаления адсорбированной воды.


    2.3.5.Электронномикроскопическое исследование.

            Препарирование образцов проводилось 2мя способами:

а) нанесения стеклянной палочкой порошка на медные опорные сеточки, расположенные на поверхности стекла и покрытые тонкой коллодиевой пленкой.

б) методом нанесения капли очень разбавленной жидкости на медные опорные сеточки, расположенные на поверхности стекла и покрытые тонкой коллодиевой пленкой.

На поверхность образцов, полученных обоими способами напылялась пленка спектрально чистого уг­лерода толщиной 150-200 Å (вакуумный пост ВУП-4, вакуум 10-4 мм), служащая в качестве подложки при просмотре образца в электронном микроскопе.

Просмотр образцов проводился в электронном микроскопе ЭВМ – 100ЛМ. Количественная обработка результа­тов выполнялась по полученным ЭМ-снимкам путем определения среднего размера частиц и анализа поверхностных концентраций наблюдаемых частиц. Для количественного анализа подбирались сходные по структу­ре участки образцов, исследовались не менее трех участков каждого образца.


2.3.6.  Рентгенографическое исследование.

Рентгенограммы образцов записывали на рентгеновском дифрактометре HZG-4A (CoKα – излучение). Расшифровка рентгенограмм велась по стандартной методике и идентифицировалась по набору межплоскостных расстояний.


 2.3.7. Дериватографичеекое исследование.

Исследование проводилось на приборе "ОД-102" в воздушной атмосфере в интервале температур 25-1000°С при скорости нагрева 5 град/мин. Скорость протяжки 1 мм/мин, ДТА 1/5, ДТГ 1/15 . Дериватографическому исследованию подвергались активированный уголь, активированный уголь смешанный с магнетитом и активированный уголь пропитанный магнитной жидкостью (водн., олеат ТЭА).

3. Результаты и их обсуждение.


В настоящей работе представлены новые методы получения магнитных сорбентов, основанные на использовании различных магнитных жидкостей. Использование именно жидкого материала для пропитки сорбента (и придания ему тем самым магнитных свойств) выгодно отличает предложенный нами способ от описанных в литературе. Применение различных магнитных жидкостей (в отличие от магнетита определенного состава) позволяет в широких пределах варьировать свойства получаемого сорбента.

Также был проведен анализ полученных нами магнитных жидкостей и магнитных сорбентов на их основе.


3.1. Рентгенофазовое исследование.

Известно [31], что свежеосажденная смесь оксидов соответствует составу Fe3O4. Через некоторое время двухвалентное железо окисляется и Fe3O4 переходит в γ-Fe2O3. Магнетит и γ-оксид железа очень похожи по структурным характеристикам. Разница в плотности упаковки. Так, упаковка γ-оксида более плотная чем у магнетита. Разницу между ними можно обнаружить на рентгенограмме лишь в области 74-75˚ угла 2θ. У Fe3O4 межплоскостное расстояние соответствует значению 74,105˚, а у γ-Fe2O3 – 74,723˚.

Анализируя полученные нами рентгенограммы (рис.9.) можно сделать вывод, что в слабощелочной среде окисление идет быстрее, чем при рН=10. А также с течением времени магнетит стехиометрического состава переходит в nFeO·mFe2O3 где m>n, и затем уже в γ-Fe2O3.

а

б

в

          80

          75

           70

           65

            60

            55

             50

Рис. 9. Рентгенограммы образцов магнетита,

а) спустя 2 недели после синтеза, б) свежеосажденный, отмытый до рН=8,5,  в) свежеосажденный, отмытый до рН=10.



а

б

             80

         75

        70

     65

   60

   55

    50

Рис. 10. Рентгенограммы образцов магнитных жидкостей в водной дисперсионной средой и смесью оксидов железа в качестве магнитного материала,

а) стабилизатор – олеат натрия, б) стабилизатор – олеат ТЭА.


Из анализа рентгенограмм (рис 10.) и данных количественного анализа следует, что в жидкостях, стабилизированных олеатом натрия, окисление двухвалентного железа идет медленнее по сравнению с жидкостями, стабилизированными олеатом ТЭА.

Что же касается концентрата магнитной жидкости на декане, то в нем, в отличие от водных МЖ и разбавленных МЖ на декане, окисление хоть и происходит, но в значительно меньшей степени.

а

б

в

            80

          75

         70

       65

      60

       55

         50

Рис. 11. Рентгенограммы а) магнетит, б) угольный магнитный сорбент, в) ионообменный магнитный сорбент


Рентгеноструктурный анализ образцов на основе магнетита (полученного путем соосаждения солей 2х- и 3х- валентного железа в аммиаке и отмытого методом магнитной декантации до рН=8,5) (рис.11) показал, что Fe2+ окисляется и со временем Fe3O4 переходит в g-Fe2O3.  Это происходит примерно одинаково интенсивно в свежеосажденной смеси оксидов и магнитном сорбенте с активированным углем. В этих образцах состав магнитного материала представляет собой смесь Fe3O4 и g-Fe2O3.

При рентгеноструктурном анализе образцов магнитных сорбентов на основе магнитных жидкостей с органической и водной дисперсионной средой выяснилось, что в магнитном сорбенте на водной основе окисление происходит быстрее, чем в магнитных сорбентах, синтезированных из неводных магнитных жидкостей. А в целом, ситуация похожа на описанную выше.

3.6.          Количественный анализ.

Количественный анализ проводился методами перманганато- и иодометрии. Данные представлены в табл.2 и на рис.12:

Таблица 2.

Изменение соотношения трех- и двухвалентного железа во времени.




№ метод.


образец

Fe(III)/Fe(общ), %

2 часа

1 день

3 дня

1 нед.

2 нед

1 мес.

3 мес.

6 мес.

1 год

1

2.1.1.

Магнетит

67

72

78

85

92

96

98

100

100

2

2.1.3.

МЖ (водн., олеат ТЭА)

70

73

76

78

83

85

88

91

92

3

2.1.6.

МЖ (декан, олеин. к-та)

68

70

73

77

82

84

87

89

90

4

2.2.1.

МС (уголь + магнетит)

67

71

75

81

87

91

95

97

98

5

2.2.1.

МС (ионнообм. + магнетит)

67

70

73

79

84

88

91

93

94

6

2.2.3.

МС (уголь + МЖ(водн., олеат ТЭА))

69

72

73

75

78

81

84

86

87

7

2.2.3.

МС (уголь+ МЖ (декан, олеин. к-та))

68

71

72

74

76

79

82

84

85


Рис.12. График, отображающий динамику окисления 2х валентного железа


Из этих данных можно сделать вывод о том, что состав феррофазы в магнитных жидкостях только в первые несколько дней приближен ко стехиометрическому составу магнетита. Со временем происходит окисление и магнетит переходит в γ-оксид железа. Это происходит и в водных и в неводных МЖ, и в концентрированных и в разбавленных, но с разной скоростью. Причем данные количественного анализа показали, что процентное содержание ионов Fe2+ в магнетите составляет 14% от общей массы, а в свежеосажденной смеси оксидов – 12. Это говорит о том, что присутствие сорбента  хоть и не сильно, но замадляет окисление

Замедление окисления важна т.к. наилучшими магнитными характеристиками обладает именно сложный оксид со стехиометрическим соотношением FeO×Fe2O3. Кроме того, зачастую проблематично уберечь двухвалентное железо от окисления когда это действительно очень важно (например, для людей страдающих недостатком гемоглобина).

В зависимости от природы и концентрации магнитной жидкости (водная или неводная дисперсионные среда, различные стабилизаторы (олеиновая кислота, олеат ТЭА, минеральные кислоты)) можно занимать поры лишь определенного размера, в то время как поры другого (нужного) размера будут использованы для селективной сорбции. Исследования показали, что наиболее глубокое проникновение магнитного материала в объем сорбента достигается использованием разбавленных магнитных жидкостей с водной дисперсионной средой и минеральными кислотами в качестве стабилизатора. Повышенная концентрация магнитных частиц в жидкости, а тем более органического вещества в качестве стабилизатора (не говоря уже о дисперсионной среде) препятствует проникновению магнитного материала в объем сорбента. Так, например, при использовании разбавленных магнитных жидкостей со стабилизатором олеатом ТЭА проникновение магнитной жидкости в объем сорбента оказалось более глубоким, чем при использовании более концентрированных жидкостей. Жидкости, стабилизированные азотной или хлорной кислотами, проникают глубже, чем стабилизированные  олеатом ТЭА. Жидкости же имеющие неводную дисперсионную среду (декан, керосин, толуол) в объем сорбента практически не проникают вовсе.



3.3. Изотермы адсорбции.


         Для предположения механизма взаимодействия сорбента с магнитной жидкостью, были измерены изотермы адсорбции активированного угля и этого же угля, пропитанного магнитной жидкостью.

В качестве адсорбтива был выбран азот, т.к. он отвечает требованиям, предъявляемым к адсорбтивам.

Был проведен анализ полученных нами изотерм адсорбции активированного угля (рис.13) и этого же угля, пропитанного магнитной жидкостью (рис.14).

Рис. 13. Изотерма сорбции активированного угля (СКТ); ■ – адсорбция, ● – десорбция


Рис. 14.  Изотерма сорбции активированного угля (СКТ), пропитанного магнитной жидкостью (К4); ■ – адсорбция, ● – десорбция


Исходя из анализа литературных данных, можно сделать несколько выводов:

  1. Изотерма адсорбции активированного угля имеет гистерезис, что дает возможность отнести ее к IV-му типу и  указывает на наличие мезопор. Также можно сделать предположение о форме мезопор – тип в; и о механизме сорбции – капиллярная сорбция.
  2. Изотерма адсорбции активированного угля, пропитанного магнитной жидкостью гистерезиса практически не имеет. Это говорит о том, что ее можно отнести ко II-му типу. Здесь происходит физическая сорбция.
  3. Таким образом, можно сделать вывод, что при пропитке активированного угля магнитной жидкостью происходит заполнение жидкостью именно мезопор. Вероятно, это происходит также при помощи капиллярных сил.

3.4.          Электронная микроскопия


На ниже следующих фотографиях представлены магнитные сорбенты, полученные различными способами. Как видно, сорбент действительно удерживает магнитные частицы. Более того, адсорбция на поверхности не однородна. В некоторых областях можно наблюдать равномерное, в других же неравномерное распределение магнитного материала по поверхности сорбента.

Страницы: 1, 2, 3, 4, 5, 6



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.