Рефераты. Информационная безопасность в сетях Wi-Fi






Уязвимость аутентификации с совместно используемым ключом

В случае аутентификации с совместно используемым ключом необходимо, чтобы клиент использовал заранее выделенный для совместного использования ключ и шифровал текст вызова, полученного от точки доступа. Точка доступа аутентифици­рует клиента путем расшифровки зашифрованного с помощью совместно используе­мого ключа ответа и проверки того, что полученный текст вызова полностью соответ­ствует отправленному.

Процесс обмена текстом вызова осуществляется по беспроводному каналу связи и является уязвимым для атаки, возможной при знании открытого текста. Эта уязви­мость в случае аутентификации с совместно используемым ключом обусловлена мате­матическими методами, лежащими в основе шифрования. Ранее в этой главе говори­лось о том, что процесс кодирования состоит в перемешивании открытого текста с ключевым потоком и получении в результате зашифрованного текста. Процесс пе­ремешивания представляет собой выполнение двоичной математической операции, которая называется "исключающее ИЛИ" (XOR). Если открытый текст перемешать с соответствующим зашифрованным текстом, в результате выполнения этой операции будет получена следующая пара: ключевой поток, используемый для WEP-ключа, и вектор инициализации (рис. 11).

Злоумышленник может захватить как открытый, так и зашифрованный текст отве­та. Выполнив над этими значениями операцию "исключающее ИЛИ", он может по­лучить действующий ключевой поток. Затем злоумышленник может использовать этот ключевой поток для расшифровки фреймов, имеющих такой же размер, как и ключе­вой поток, поскольку вектор инициализации, используемый для получения ключевого потока, такой же, как и у расшифрованного фрейма. На рис. 12 показано, как атакующий сеть злоумышленник может проследить процесс аутентификации с совместно используемым ключом и заполучить ключевой поток.

Рис. 11. Извлечение ключевого потока

Рис. 12. Уязвимость механизма аутентификации с совместно используемым ключом

Уязвимость аутентификации с использованием МАС-адресов

МАС-адреса пересылаются с помощью незашифрованных фреймов стандарта 802.11, как и оговорено в спецификации этого стандарта. В результате беспроводные LAN. в которых применяется аутентификация с использованием МАС-адресов, уяз­вимы для атак, в ходе которых злоумышленник "подкапывается" под аутентификацию с использованием МАС-адресов путем имитации "законного" МАС-адреса.

Имитация МАС-адреса возможна для сетевых карт стандарта 802.11, которые по­зволяют заменять универсально-назначаемый адрес (universally administered address, UAA) локально-назначаемым (locally administered address, LAA). Универсальный ад­рес — это МАС-адрес, жестко закодированный для сетевой карты производителем. Атакующий может использовать анализатор протокола для определения разрешенного в BSS МАС-адреса и сетевую карту, допускающую локальное назначение адреса, для имитации разрешенного МАС-адреса.

Уязвимость WEP-шифрования

Наиболее серьезные и непреодолимые проблемы защиты сетей стандарта 802.11 бы­ли выявлены криптоаналитиками Флурером (Fluhrer), Мантином (Mantin) и Шамиром (Shamir). В своей статье они показали, что WEP-ключ может быть получен путем пас­сивного накопления отдельных фреймов, распространяющихся в беспроводной LAN.

Уязвимость обусловлена как раз тем, как механизм WEP применяет алгоритм со­ставления ключа (key scheduling algorithm, KSA) на основе поточного шифра RC4. Часть векторов инициализации (их называют слабые IV — weak IV) могут раскрыть биты ключа в результате проведения статистического анализа. Исследователи компа­нии AT&T и университета Rice восполь­зовались этой уязвимостью и выяснили, что можно заполучить WEP-ключи длиной 40 или 104 бит после обработки 4 миллионов фреймов. Для первых беспроводных LAN стандарта 802.11b это означает, что они должны передавать фреймы примерно один час, после чего можно вывести 104-разрядный WEP-ключ. Подобная уязвимость дела­ет WEP неэффективным механизмом обеспечения защиты информации.

Атака считается пассивной, если атакующий просто прослушивает BSS и накапли­вает переданные фреймы. В отличие от уязвимости аутентификации с совместно ис­пользуемым ключом, атакующий, как показали Флурер, Мантин и Шамир, может за­получить действующий WEP-ключ, а не только ключевой поток. Эта информация по­зволит атакующему получить доступ к BSS в качестве аутентифицированного устройства без ведома администратора сети.

Если атаки такого типа окажется недостаточно, можно, как показывает теория, провести на механизм WEP и другую (правда, на практике атаки такого рода не про­водились). Эта логически возможная атака может быть основана на методах, приме­няемых для преодоления защиты, обеспечиваемой механизмом аутентификации с со­вместно используемым ключом: для получения ключевого потока используются от­крытый текст и соответствующий ему зашифрованный текст.

Как уже говорилось, выведенный ключевой поток можно использовать для дешиф­ровки фреймов для пары "вектор инициализации —WEP-ключ" и для определенной длины. Умозрительно можно предположить, что атакующий будет прослушивать сеть с целью накопления как можно большего числа таких ключевых потоков, чтобы создать базу данных ключ поток, взломать сеть и получить возможность расшифровывать фреймы. В беспроводной LAN, в которой не используется аутентификация с совместно используемым ключом, атака с применением побитовой обработки фрейма позволяет злоумышленнику вывести большое количество ключевых потоков за короткое время.

Атаки с использованием побитовой обработки (или "жонглирования битами", bit flipping) основаны на уязвимости контрольного признака целостности (ICV). Данный механизм базируется на полиномиальной функции CRC-32. Но эта функция неэф­фективна как средство контроля целостности сообщения. Математические свойства функции CRC-32 позволяют подделать фрейм и модифицировать значение ICV, даже если исходное содержимое фрейма неизвестно.

Хотя размер полезных данных может быть разным для различных фреймов, многие элементы фреймов данных стандарта 802.11 остаются одними и теми же и на одних и тех же позициях. Атакующий может использовать этот факт и подделать часть фрейма с полезной информацией, чтобы модифицировать пакет более высокого уровня. Сце­нарий проведения атаки с использованием побитовой обработки может быть следую­щим (рис. 13).

1.      Атакующий захватывает фрейм беспроводной LAN.

2.      Атакующий  изменяет случайные биты  (flips random bits)  полезной  нагрузки фрейма.

3.      Атакующий модифицирует ICV (подробнее об этом — ниже).

4.      Атакующий передает модифицированный фрейм.

5.      Приемник (клиент или точка доступа) получает фрейм и вычисляет ICV по со­держимому фрейма.

6.      Приемник сравнивает вычисленный ICV со значением, хранящимся в поле ICV фрейма.

7.      Приемник принимает модифицированный фрейм.

8.      Приемник передает модифицированный фрейм на устройство более высокого уровня (повторитель или хост-компьютер).

9.      Поскольку в пакете уровня 3 биты изменены, контрольная сумма для уровня 3 оказывается неправильной.

10.  Протокол IP приемника выдаст сообщение об ошибке.

11.  Атакующий получает сведения о беспроводной LAN, анализируя незашифро­ванное сообщение об ошибке.

12.  Получая сообщение об ошибке, атакующий выводит ключевой поток, как в слу­чае атаки с повторением IV.

Основой такой атаки является несоответствие ICV требуемому значению. Значение ICV находится в зашифрованной с помощью WEP части фрейма; как атакующий мо­жет изменить ее, чтобы согласовать изменения, вызванные жонглированием битами, с фреймом? На рис. 14 проиллюстрирован процесс "жонглирования битами" и из­менения ICV.

1.  Пусть фрейм (F1) имеет ICV, значение которого равно С1.

2.  Генерируется новый фрейм (F2) той же длины, какую имеет набор битов фрей­ма F1.

Рис. 13. Атака с использованием побитовой обработки

3.  С помощью операции "исключающее ИЛИ" над F1 и F2 создается фрейм F3.

4.  Вычисляется ICV для F3 (С2).

5.  Посредством операции "исключающее ИЛИ" над С1 и С2 генерируется ICV СЗ.


Рис. 14. Модифицирование ICV за счет побитовой обработки

Проблемы управления статическими WEP-ключами

В спецификации стандарта 802.11 не указан конкретный механизм управления ключами. WEP по определению поддерживает только статические ключи, заранее предназначенные для совместного использования. Поскольку в процессе аутентифи­кации по стандарту 802.11 аутентифицируется устройство, а не пользователь этого устройства, утеря или кража беспроводного адаптера немедленно приводит к возникновению проблемы, связанной с защитой сети. Для ее решения администратору сети придется долго вручную изменять ключи всех беспроводных устройств сети, если имеющийся ключ "скомпрометирован" из-за утери или кражи адаптера.

Такой риск может оказаться приемлемым для небольших сетей, когда управление пользовательскими устройствами — несложная задача. Но подобная перспектива не­приемлема для крупных сетей, когда счет беспроводных пользовательских устройств идет на тысячи. Без механизма распределения или генерации ключей администратору придется дневать и ночевать там, где развернута беспроводная сеть.

Защищенные LAN стандарта 802.11

Промышленность преодолела слабые места в механизмах аутентификации и защи­ты сетей стандарта 802.11. Чтобы предоставить пользователям решения, обеспечи­вающие защищенность, масштабируемость и управляемость сетей, IEEE повысил за­щищенность сетей стандарта 802.11, разработав улучшенный механизм аутентифика­ции и шифрования. Эти изменения были введены в проект стандарта 802.11i. На сегодняшний день проект 802.11i не утвержден как стандарт, поэтому Альянс Wi-Fi (Wi-Fi Alliance) собрал поднабор компонентов, соответствующих стандарту 802.11i, который получил название "защищенный доступ к Wi-Fi" (Wi-Fi Protected Access, WPA). В данном разделе подробно описаны стандарт 802.11i и компоненты WPA.

Многие ошибочно полагают, что WEP — это единственный компонент, обеспечивающий защиту беспроводных LAN. На самом деле защита беспроводных сетей имеет четыре составляющие.

·        Базовая аутентификация (authentication framework). Представляет собой меха­низм, который усиливает действие алгоритма аутентификации путем организации   защищенного  обмена  сообщениями   между  клиентом,  точкой  доступа и сервером аутентификации.

·        Алгоритм аутентификации. Представляет собой алгоритм, посредством которого подтверждаются полномочия пользователя.

·        Алгоритм защиты данных. Обеспечивает защиту при передаче через беспровод­ную среду фреймов данных.

·        Алгоритм обеспечения целостности данных (data integrity algorithm). Обеспечивает целостность данных при передаче их через беспроводную среду, позволяя при­емнику убедиться в том, что данные не были подменены.

Первая составляющая: базовая аутентификация

Основой аутентификации стандарта 802.11 является служебный фрейм аутентифи­кации стандарта 802.11. Этот служебный фрейм помогает реализовать алгоритмы от­крытой аутентификации и аутентификации с совместно используемым ключом, хотя сам по себе фрейм не обладает способностью аутентифицировать клиента. Поскольку о недостатках аутентификации стандарта 802.11 мы уже говорили, попробуем разо­браться в том, что необходимо сделать для того, чтобы обеспечить проведение защи­щенной аутентификации в беспроводных LAN.

В стандарте 802.11 не определены основные компоненты, способные обеспечить эффективную аутентификацию (они перечислены ниже).

  • Централизованная аутентификация, ориентированная на пользователя.
  • Динамично шифруемые ключи.
  • Управление зашифрованными ключами.
  • Взаимная аутентификация.

Аутентификация, ориентированная на пользователя, чрезвычайно важна для обеспече­ния защиты сети. Аутентификация, ориентированная на устройства, подобная открытой аутентификации и аутентификации с совместно используемым ключом, не способна вос­препятствовать неавторизованным пользователям воспользоваться авторизованным уст­ройством. Из этого следует, что при потере или краже такого устройства или по окончании работы по найму администратор сети будет вынужден вручную изменять ключи всех точек доступа и клиентов сети стандарта 802.11. При централизованном, ориентированном на пользователя управлении через сервер аутентификации, авторизации и учета (authentication, authorization, and accounting, AAA), такой как. RADIUS, администратор мо­жет запретить доступ к сети отдельным пользователям, а не их устройствам.

Требование проводить аутентификацию, ориентированную на пользователя, имеет положительный побочный эффект: наличие отдельных ключей шифрования для каж­дого пользователя. Разновидности аутентификации, которые поддерживают создание динамических ключей шифрования, хорошо подходят для улучшения защиты беспро­водных LAN и модели управления ими. Динамические ключи, индивидуальные для каждого пользователя, освобождают администратора сети от необходимости использо­вания статически управляемых ключей. Ключи шифрования динамически назначают­ся и аннулируются, когда пользователь проходит процедуру аутентификации или вы­ходит из сети. Для того чтобы удалить какого-либо пользователя из сети, достаточно аннулировать его учетную запись, и он потеряет возможность доступа к сети.

Взаимная аутентификация — это аутентификация двухсторонняя. Ее "двухсторонняя" природа обусловлена тем, что не только сеть аутентифицирует клиента, но и клиент аутен­тифицирует сеть. При открытой аутентификации и аутентификации с совместно используемым ключом точка доступа или сеть аутентифицирует клиента. Последний не знает на­верняка, что подключился именно к той сети, к какой нужно, поскольку в стандарте 802.11 не предусмотрен механизм, позволяющий клиенту аутентифицировать сеть. В ре­зультате принадлежащая злоумышленнику точка доступа или клиентская станция может выдать себя за "законную" точку доступа и повредить данные на клиентской машине. На рис. 15 представлены диаграммы, иллюстрирующие процессы односторонней и взаимной аутентификации.

Рис. 15. Односторонняя и взаимная аутентификация

Поставщики сетей стандарта 802.11 и IEEE осознают необходимость усиления и замены существующих механизмов обеспечения защиты — и аутентификации, и шифрования. Исследовательская группа I рабочей группы стандарта 802.11 сейчас работает над этим, и после того как изменения будут полностью подготовлены, спе­цификации по защите будут утверждены как спецификации стандарта 802.11i.

IEEЕ начал борьбу с дефектами механизма аутентификации стандарта 802.11 с принятия базовой аутентификации, соответствующей стандарту 802.1X. Стан­дарт 802.1X представляет собой стандарт IEEE, который относится ко всем топо­логиям канального уровня серии стандартов 802 и позволяет наращивать его механизмы аутентификации до таковых, обычно реализуемых на более высоких уровнях. Стандарт 802.1X основан на принципах аутентификации, характерных для протокола типа "точка-точка" (Point-to-Point Protocol, PPP), и называется расширяемый протокол аутентификации (Extensible Authentication Protocol, EAP). Попросту говоря, стандарт 802.1X инкапсулирует сообщения для использования их на уровне 2. Стандарт 802.11i включает базовую аутентификацию стандарта 802.1X, требуя, чтобы она применялась для аутентификации пользователей. На рис. 16 представлен стандарт 802.1X в части алгоритма аутентификации и топо­логий канального уровня серии стандартов 802.

Рис. 16. Стандарт 802.1X и топологии канального уровня

Протокол ЕАР (RFC 2284) и стандарт 802.1X не регламентируют использование особого алгоритма аутентификации. Администратор сети может применять соответст­вующую протоколу ЕАР разновидность аутентификации — или 802.1X, или ЕАР. Единственное требование — чтобы как клиент стандарта 802.11 (здесь он называется просителем (supplicant)), так и сервер аутентификации поддерживали алгоритм ЕАР-аутентификации. Такая открытая и расширяемая архитектура позволяет использовать базовую аутентификацию в различных условиях, и в каждой ситуации можно приме­нять подходящую разновидность аутентификации.

Ниже приведены примеры типов ЕАР-аутентификации.

·      ЕАР защиты транспортного уровня (EAP-transport layer security, EAP-PEAP). Ра­ботает аналогично протоколу защищенных сокетов (secure sockets layer, SSL).
Взаимная аутентификация выполняется с использованием цифровых сертификатов на стороне сервера для создания SSL-туннеля для клиента, осуществляющего защищенную аутентификацию в сети.

  • EAP-Message  Digest  5   (EAP-MD5).  Аналогично  протоколу  аутентификации с предварительным  согласованием  вызова (challenge  handshake  authentication protocol, CHAP), EAP-MD5 обеспечивает работу алгоритма односторонней аутентификации с использованием пароля.
  • EAP-Cisco. ЕАР-аутентификация типа EAP-Cisco, которую называют также LEAP, была первой, определенной для применения специально в беспроводных LAN. EAP-Cisco — это алгоритм взаимной аутентификации с использованием пароля.

Аутентификация по стандарту 802.1X требует наличия трех составляющих.

  • Проситель. Размещается на стороне клиента беспроводной LAN.
  • Аутентификатор (authenticator). Размещается в точке доступа.
  • Сервер аутентификации. Размещается на сервере RADIUS.

Эти составляющие представляют собой программные компоненты, устанавливае­мые на устройствах сети. С точки зрения стандарта 802.11 аутентификатор создает логический порт для устройства клиента, основанный на идентификаторе ассоциации (AID). Этот логический порт имеет два тракта прохождения данных: неконтролируе­мый и контролируемый. Неконтролируемый тракт прохождения данных позволяет проходить через сеть всему трафику аутентификации стандарта 802.1X. Контролируе­мый тракт прохождения данных блокирует обычный трафик сети до тех пор, пока не будет осуществлена успешная аутентификация клиента. На рис. 17 показаны логи­ческие порты аутентификатора стандарта 802.1X

Рис. 17. Логические порты аутентификатора стандарта 802. 1X

Вторая составляющая: алгоритм аутентификации

Стандарт 802.11i и WPA обеспечивают механизм, поддерживающий работу алгоритма аутентификации с целью обеспечения связи между клиентом, точкой доступа и сервером аутентификации с использованием механизма базовой аутентификации стандарта 802.1X.

Ни стандарт 802.11i, ни WPA не регламентируют применение особого алгоритма аутентификации, но оба рекомендуют использовать алгоритм, который поддерживал бы взаимную аутентификацию, генерацию динамических ключей шифрования и аутентификацию пользователя. Примером такого алгоритма является алгоритм EAP-Cisco. Этот алгоритм, более известный как Cisco LEAP, представляет собой простой и эффективный алгоритм, разработанный специально для использования в беспроводных LAN.

Алгоритм EAP-Cisco является патентованным алгоритмом, который работает по­верх алгоритма базовой открытой аутентификации. По этой причине детали алгорит­ма EAP-Cisco, касающиеся содержимого генерируемых вызова и ответа на вызов, а также распределения ключей шифрования, не могут быть разглашены. Алгоритм EAP-Cisco перевыполняет требования, предъявляемые к защищенной аутентифика­ции пользователя в беспроводной LAN, за счет применения следующих мер.

·        Аутентификация, ориентированная на пользователя.

·        Взаимная аутентификация.

·        Динамические ключи шифрования.

Если какому-либо пользователю нужно запретить доступ к сети, достаточно уда­лить его учетную запись на централизованном сервере аутентификации. В результате пользователь не сможет успешно пройти процесс аутентификации, а его устройство — сгенерировать правильный динамический ключ шифрования.

Третья составляющая: алгоритм защиты данных

Уязвимость шифрования в WEP поставила производителей сетей стандарта 802.11 и ис­следователей IEEE в затруднительное положение. Как можно улучшить систему шифрова­ния стандарта 802.11, не прибегая к замене всех точек доступа и сетевых карт клиентов?

IEEE ответил на этот вопрос, предложив являющийся частью стандарта 802.11i (и WPA) временный протокол целостности ключа (temporal key integrity protocol, TKIP).

Этот протокол использует многие основные функции WEP, чтобы оправдать инвести­ции, сделанные клиентами в оборудование и инфраструктуру стандарта 802.11, но лик­видирует несколько слабых мест последнего, обеспечивая эффективное шифрование фреймов данных. Основные усовершенствования, внесенные протоколом TKIP, таковы.

·        Пофреймовое  изменение ключей шифрования.  WEP-ключ быстро изменяется, и для каждого фрейма он другой.

·        Контроль целостности сообщения (message integrity check, MIC). Обеспечивается эффективный контроль целостности фреймов данных с целью предотвращения проведения  тайных  манипуляций  с фреймами  и  воспроизведения  фреймов.

Атаки, использующие уязвимость слабых IV, основаны на накоплении нескольких фреймов данных, содержащих информацию, зашифрованную с использованием слабых IV. Простейшим способом сдерживания таких атак является изменение WEP-ключа, используемого при обмене фреймами между клиентом и точкой доступа, до того как атакующий успеет на­копить фреймы в количестве, достаточном для вывода битов ключа.

IEEE адаптировала схему, известную как пофреймовое изменение ключа (per-frame keying). (Ее также называют изменение ключа для каждого пакета (per-packet keying) и частое изменение ключа пакета (fast packet keying).) Основной принцип, на котором основано пофреймовое изменение ключа, состоит в том, что IV, МАС-адрес передатчика и WEP-ключ обрабатываются вместе с помощью двухступенчатой функции перемешива­ния. Результат применения этой функции соответствует стандартному 104-разрядному WEP-ключу и 24-разрядному IV.

IEEE предложила также увеличить 24-разрядный вектор инициализации до 48-разрядного IV. В нижеследующих разделах объясняется, почему необходимо такое расширение IV. На рис. 18 представлен образец 48-разрядного IV и показано, как этот IV разбивается на части для использования при пофреймовом изменении ключа.

Рис. 18. Разбиение на части IV для использования при пофреймо­вом изменении ключа

Процесс пофреймового изменения ключа можно разбить на следующие этапы.

  1. Базовый WEP-ключ (полученный в процессе аутентификации по стандарту 802.1X) перемешивается со старшими 32 разрядами 48-разрядного IV (32-разрядные числа могут принимать значения 0-4 294 967 295) и МАС-адресом передатчика. Результат этого действия называется ключ 1-й фазы (phase 1 key). Этот процесс позволяет зане­сти ключ 1-й фазы в кэш и также напрямую поместить в ключ (рис. 19).
  2. Ключ 1-й фазы снова перемешивается с IV и МАС-адресом передатчика (ТА) для выработки значения пофреймового ключа.
  3. Вектор инициализации (IV), используемый для передачи фрейма, имеет размер только 16 бит (16-разрядные числа могут принимать значения 0-65 535). Оставшие­ся 8 бит представляют фиксированное значение, используемое как заполнитель.

4.    Пофреймовый ключ используется для WEP-шифрования фрейма данных.

5.    Когда 16-битовое пространство IV оказывается исчерпанным, ключ 1-й фазы отбрасывается и 32 старших разряда увеличиваются на  1.  (Если значение IV первой фазы было равно 12, оно увеличивается до 13.)

6.    Значение Пофреймового ключа вычисляется заново, как на этапе 2.

Рис. 19. Процесс Пофреймового изменения ключа

Пофреймово изменяемый ключ имеет силу только тогда, когда 16-разрядные зна­чения IV не используются повторно. Если 16-разрядные значения IV используются дважды, происходит коллизия, в результате чего появляется возможность провести атаку и вывести ключевой поток. Чтобы избежать коллизий IV, значение ключа 1-й фазы вычисляется заново путем увеличения старших 32 разрядов IV на 1 и повторного вычисления пофреймового ключа.

Этот алгоритм усиливает WEP до такой степени, что почти все известные сейчас возможности атак устраняются без замены существующего оборудования. Следует от­метить, что этот алгоритм (и TKIP в целом) разработан с целью залатать бреши в сис­теме аутентификации WEP и стандарта 802.11. Он жертвует слабыми алгоритмами, вместо того чтобы заменять оборудование. Следующее поколение оборудования стан­дарта 802.11 должно поддерживать TKIP, но WEP/TKIP будет постепенно свертывать­ся в пользу алгоритма с большими возможностями шифрования, такого как усовер­шенствованный стандарт шифрования (advanced encryption standard, AES).

Четвертая составляющая: целостность данных

В будущем для усиления малоэффективного механизма, основанного на использо­вании контрольного признака целостности (ICV) стандарта 802.11, будет применяться контроль целостности сообщения (MIC). Благодаря MIC могут быть ликвидированы слабые места защиты, способствующие проведению атак с использованием поддель­ных фреймов и жонглированием битами, рассмотренные ранее в. IEEE предложила специальный алгоритм, получивший название Michael (Майкл), чтобы усилить роль ICV в шифровании фреймов данных стандарта 802.11.

MIC имеет уникальный ключ, который отличается от ключа, используемого для шифрования фреймов данных. Этот уникальный ключ перемешивается с назначен­ным МАС-адресом и исходным МАС-адресом фрейма, а также со всей незашифро­ванной частью фрейма, несущей полезную нагрузку.

Меры противодействия MIC состоят в выполнении приемником следующих задач.

1.    Приемник удаляет существующий ключ на ассоциирование.

2. Приемник регистрирует проблему как относящуюся к безопасности сети.

3.    Ассоциированный клиент, от которого был получен ложный фрейм, не может быть
 ассоциирован и аутентифицирован в течение 60 секунд, чтобы замедлить атаку.


4.  Если клиент получил ложный фрейм, то он отбрасывает все фреймы, не соот­ветствующие стандарту 802.1X.

5.  Такой клиент также запрашивает новый ключ.

Наше рассмотрение пофреймового назначения ключей и MIC касалось в основном ключа шифрования и ключа MIC. Но мы ничего не говорили о том, как ключи генери­руются и пересылаются от клиента к точке доступа и наоборот. В следующем разделе мы и рассмотрим предлагаемый стандартом 802.11 механизм управления ключами.

Усовершенствованный механизм управления ключами

Алгоритмы аутентификации стандарта 802.11 и ЕАР могут обеспечить сервер RADIUS и клиента динамическими, ориентированными на пользователя ключами. Но тот ключ, который создается в процессе аутентификации, не является ключом, используемым для шифрования фреймов или проверки целостности сообщений. В стандарте 802.11i WPA для получения всех ключей используется так называемый мастер-ключ (master key). Клиент и точка доступа устанавливают динамический ключ (он называется пар­ный мастер-ключ, или РМК, от англ. pairwise master key), полученный в процес­се аутентификации по стандарту 802.1X. На основе этого ключа, а также МАС-адресов клиента и точки доступа генерируется парный переходный ключ (painvise transient key, PTK), на основе которого получают ключи для шифрования фреймов и проверки целостности сообщений.

Парный мастер-ключ (РМК) и парный переходный ключ (РТК) являются одноад­ресатными по своей природе. Они только шифруют и дешифруют одноадресатные фреймы, и предназначены для единственного пользователя. Широковещательные фреймы требуют отдельной иерархии ключей, потому что использование с этой целью одноадресатных ключей приведет к резкому возрастанию трафика сети. Точке доступа (единственному объекту BSS, имеющему право на рассылку широковещательных или многоадресатных сообщений) пришлось бы посылать один и тот же широковещатель­ный или многоадресатный фрейм, зашифрованный соответствующими пофреймовы­ми ключами, каждому пользователю.

Широковещательные или многоадресатные фреймы используют иерархию группо­вых ключей. Групповой мастер-ключ (group master key, GMK) находится на вершине этой иерархии и выводится в точке доступа.

Групповой мастер-ключ, текстовая строка, МАС-адрес точки доступа и Gnonce (значение, которое берется из счетчика ключа точки доступа) объединяются и обраба­тываются с помощью генератора ПСП, в результате чего получается 256-разрядный групповой пе­реходный ключ (group transient key, GTK). GTK делится на 128-разрядный ключ шиф­рования широковещательных/многоадресатных фреймов, 64-разрядный ключ переда­чи MIC (transmit MIC key) и 64-разрядный ключ приема MIC (MIC receive key).

С помощью этих ключей широковещательные и многоадресатные фреймы шифруют­ся и дешифруются точно так же, как с помощью одноадресатных ключей, полученных на основе парного мастер-ключа (РМК).

Групповые ключи удаляются и регенерируются каждый раз, когда какая-нибудь станция диассоциируется или деау­тентнфицируется в BSS. Если происходит ошибка MIC, одной из мер противодейст­вия также является удаление всех ключей с имеющей отношение к ошибке приемной станции, включая групповые ключи.

Шифрование по алгоритму AES

Известно, что шифрование и аутентификация, проводимые в соответствии со стандартом 802.11, имеют слабые стороны. IEEE и WPA усилили алгоритм WEP про­токолом TKIP и предлагают сильный механизм аутентификации по стандарту 802.11i, обеспечивающий защиту беспроводных LAN стандарта 802.11. В то же время IEEE рассматривает возможность усиления механизма шифрования. С этой целью IEEE адаптировал алгоритм AES для применения его по отношению к разделу, касающему­ся защищаемых данных предлагаемого стандарта 802.11i. Компоненты WPA не обес­печивают поддержку шифрования по алгоритму AES. Однако последние версии WPA, возможно, будут реализованы в соответствии со стандартом 802.11i и для обеспечения взаимодействия будут поддерживать шифрование по алгоритму AES.

Алгоритм AES представляет собой следующее поколение средств шифрования, одобренное Национальным институтом стандартов и технологий (NIST) США. IEEE разработал режим AES, предназначенный специально для применения в беспроводных LAN. Этот режим называется режим счета сцеплений блоков шифра (Cipher Block Chaining Counter Mode, CBC-CTR) с контролем аутентичности сообщений о сцеплениях бло­ков шифра (Cipher Block Chaining Message Authenticity Check, CBC-MAC), все вместе это обозначается аббревиатурой AES-CCM. Режим ССМ представляет собой комби­нацию режима шифрования CBC-CTR и алгоритма контроля аутентичности сообще­ний СВС-МАС. Эти функции скомбинированы для обеспечения шифрования и про­верки целостности сообщений в одном решении.

Алгоритм шифрования CBC-CTR работает с использованием счетчика для попол­нения ключевого потока. Значение этого счетчика увеличивается на единицу после шифрования каждого блока. Такой процесс обеспечивает получение уникального клю­чевого потока для каждого блока. Фрейм с открытым текстом делится на 16-байтовые блоки. После шифрования каждого блока значение счетчика увеличивается на едини­цу, и так до тех пор, пока не будут зашифрованы все блоки. Для каждого нового фрейма счетчик переустанавливается.

Алгоритм шифрования СВС-МАС выполняется с использованием результата шиф­рования СВС по отношению ко всему фрейму, к адресу назначения, адресу источника и данным. Результирующий 128-разрядный выход усекается до 64 бит для использо­вания в передаваемом фрейме.

СВС-МАС работает с известными криптографическими функциями, но имеет из­держки, связанные с выполнением двух операций для шифрования и целостности со­общений. Этот процесс требует серьезных вычислительных затрат и значительно уве­личивает "накладные расходы" шифрования.

Резюме

Алгоритмы аутентификации и шифрования, определенные в стандарте 802.11 раз­работки 1997 года, имеют множество недостатков. Система аутентификации, так же как алгоритм WEP-шифрования, могут быть взломаны за короткое время. Протокол TKIP обещает ликвидировать недостатки WEP-шифрования и системы аутентифика­ции в краткосрочной перспективе, а стандарт 802.1X и AES предоставят долговремен­ное решение проблемы безопасности беспроводных сетей.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.