Рефераты. Комплексный анализ рыбной отрасли






,

в котором λ - положительная константа, темп роста сбалансированной траекто­рии. Сбалансированная траектория  называется магистралью, если ее темп роста λ максимален.

Как следует из данного определения, магистраль, если она существует, принадлежит при всех t = 0, 1,2,... лучу

.

Этот луч принято называть неймановским лучом.

Понятие темпа роста определено выражением  применительно к сба­лансированным траекториям модели Гейла.

Рассмотрим сначала специальное подмножество МоМ тривиальных ТП мо­дели Гейла, то есть таких процессов , у которых . Можно пока­зать (см. задачу 18 в конце гл. 9), пользуясь определением модели Гейла, что подмножество Мо состоит из одного элемента (,). Его темп роста определяем следующим образом

λ(,) = 0.

Пусть теперь - любой нетривиальный ТП; его темп роста определяется так:

В правой части последнего равенства минимум берется по всем положитель­ным компонентам вектора .

Рассмотрим 2 последних выражения (9.6.16)-(9.6.17), задающих определение темпа роста любого ТП , или говоря иначе, определяющие на множестве М скалярную неотрицательную функцию . Каковы свойства этой функции? Отметим три из них.

1. Функция является положительно однородной функцией нулевой степени, то есть

,

при любом (> 0).

2. Значение функции удовлетворяет неравенству

3. В множестве М существует такой ТП , что

причем справедливо неравенство

.

Итак, для фармацевтической отрасли представлены данные по валовому выпуску и осуществленным соответствующим затратам для семи лет. Сведем эти данные в таблицу:



Материальные затраты, x

Выпуск, y

1

87573

101964

2

95515,9

191487

3

109837,86

166431

4

71931

120408

5

75687,8

92829

6

72835,49

83607

7

80921,5

101964


Графически это будет представлено так:

Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.

Тогда из представленного соотношения найдем темп роста экономики:

Константа λ в сбалансированной траектории единственна (это следует из ме­тодики ее определения, а поэтому траектория является сбалансированной траекторией с максималь­ным темпом роста λ. Уравнение элементов этой траектории выглядит так:

Тогда сбалансированная траектория выглядит следующим образом:



Материальные затраты, x

Сбал. выпуск, y

1

87573

100524,0139

2

95515,9

109641,5752

3

109837,86

126081,5841

4

71931

82568,7466

5

75687,8

86881,13301

6

72835,49

83607

7

80921,5

92888,83552


Глава 3

 

3.1. Доработки модели Леонтьева


Статистическая таблица модели Леонтьева, построенная с помощью коэффициентов прямых затрат выглядит следующим образом:

Производство продукции, B

Потребление продукции

Конечная продукция Y


Валовой выпуск


Рыбная

Логистика

Судоремонтная

Пищевая

Машино и приборо-строение

Рыбная

0,01

0,15

0,73

0,1

0,01

56700

101964

Логистика

0,04

0,2

0,1

0,3

0,36

56430

204324

Судоремонтная

0,3

0,01

0,6

0,05

0,04

390860

508326

Пищевая

0,5

0,01

0,1

0,3

0,09

787890

1289754

Машино и приборо-строение

0,2

0,2

0,1

0,2

0,3

323630

734563

 

Что можно сказать о полученных коэффициентах прямых затрат для фармацевтической отрасли. Как видно из таблицы, наиболее крупным потребителем продукции рыбной отрасли является судостроение, что не удивительно, так как большая часть рыбной продукции препаратов поступает по государственным программам.  Если рассматривать рыбную отрасль как потребителя, то по предложенному разбиению на отрасли, видно, что пищевая промышленность поставляет большую часть продукции в качестве  рыбной отрасли. В качестве предложений по усовершенствованию функционирования экономики в рамках модели Леонтьева можно представить следующее: увеличить коэффициент прямых затрат отрасли приборо- и машиностроения с 0,2 до 0,5, а, логистики, хотя бы до 0,1, что позволит автоматизировать производство лекарственных препаратов, проверку их качества, а также усовершенствовать каналы сбыта и скорость движения продукции.


3.2. Доработки магистральной модели


Неймановский луч, определяемый по формуле ,

выглядит на графике следующим образом.


Как видно из графика, Неймановский луч, определяемый как луч с наименьшим тангенсом угла, соответствует всего двум точкам, характеризующим равновесию производственных затрат и валового выпуска во времени. Это говорит о том, что существует возможность сделать модель более сбалансированной путем обеспечения постоянного во времени темпа роста выпуска продукции рыбной отрасли, зависящего от материальных затрат.

Глава 4

 

4.1. Построение модели Солоу


Для удобства исследования моделей экономической динамики рассматривают модели с агрегированными переменными. К ним относятся односекторные модели, в которых экономика на длительном периоде [О, Т] в каждой момент времени t  [О, Т] характеризуется набором переменных X, Y, К, L, I и С, выражающих со­ответственно объемы валовой продукции, конечной продукции, ОПФ, рабочей си­лы, инвестиций и непроизводственного потребления (без учета государственных расходов). Они связаны балансовыми соотношениями:

где a, 0 < a < 1, — коэффициент амортизационных затрат.

Подставляя последние соотношения в первое, получим односекторную модель экономической динамики

   t  [О, Т]

Если t принимает дискретные значения t = 0, 1, ..., Т, то уравнение модели запи­сывается в виде

Аналогом дискретной модели для непрерывного времени t  [О, Т]

явля­ется модель

где K = dK/dt. При этом переменную t обычно не записывают.

Уравнение связывает 3 переменных: X, К и С. Дальнейшие преобразования уравнения связаны с уменьшением числа переменных.

1) Пусть μ= 0, т.е. все инвестиции I полностью идут на прирост ОПФ без расходов на амортизацию. Если считать, что

то есть капитальные вложения пропорциональны приросту выпуска валовой про­дукции, где q > 0 называется капиталоемкостью прироста валовой продукции, то из  получим односекторную динамическую модель Леонтьева

2) Пусть в модели  переменная X определяется с помощью производст­венной функции, то есть X=F(K,L) с выполнением для F всех требований для произ­водственных функций, a L - экзогенная (управляющая) переменная с постоянным темпом роста.

Отсюда следует, что , где Lo = L{0).

Для удобства изучения модели перейдем к относительным переменным:

x=X/L

—  производительность труда;

k = K/L

— фондовооруженность;

с=С/L

— удельное потребление.

Все эти величины являются функциями времени t. Подставляя эти выражения, получим

Сокращая все слагаемые на L, найдем

Далее, считая X=F(K,L) линейной однородной функцией, получим

или x=f(k).

При этом f(k) удовлетворяет следующим условиям:

1) f(0)=0;

2) f”(k)>0;

3) f”(k)<0;

4) f(k)→0 при k→0;

Например, этим условиям удовлетворяет степен­ная функция вида Кобба-Дугласа  (b>0, 0<α<1).









Неоклассическая производственная функция.

Подставляя x=f(k) в , получим открытую динамическую модель Р. Солоу

в форме дифференциального уравнения 1-го порядка со свободной (управляющей) переменной С.

Преобразуем открытую модель Солоу в замкнутую, исключив переменную С. Для этого зададим постоянную норму (долю) накопления s = I/Y и обозначим через u= С/У норму (долю) потребления, связанную с s зависимостью s + u = 1, что следует из . Отсюда следует

Получим замкнутую динамическую модель Солоу

в форме дифференциального уравнения 1-го порядка с управляющей переменной s. Так как правая часть уравнения непрерывна, то решение k(t) уравнения существует.

Если из уравнения найти k(t), то задав L(t), найдем

, , ,

и ,

то есть получим все переменные, характеризующие экономический процесс.

Приступим к построению динамической модели Солоу. Для начала определим экзогенные переменные.

Это  Lo=14600.

Тогда, при условия постоянного темпа роста, можно составить таблицу:

Год

L

1

314

2

362

3

418

4

482

5

556

6

642

7

740


Следующая переменная, которую можно вычислить по формуле: k=K/L – это фондовооруженность.

Год

k

1

55

2

55,32

3

136,04

4

163,69

5

155,17

6

111,62

7

120,65

 

Следующая переменная, которую можно вычислить по формуле: x=X/L

– это производительность труда;

Год

x

1

324,62

2

528,48

3

398,18

4

249,72

5

166,90

6

130,31

7

137,76

 

 

Следующая переменная, которую можно вычислить по формуле: с=С/L

–  удельное потребление.

Год

c

1

180,52

2

99,38

3

162,88

4

97,52

5

80,71

6

12,69

7

12,91


Параметр a — коэффициент амортизационных затрат, 0 < a < 1, примем равным 0,1.

Найдем параметры функции x=f(k):

k

x

55,00

324,62

55,32

528,48

136,04

398,18

163,69

249,72

155,17

166,90

111,62

130,31

120,65

137,76


x=f(k)= 4740,2*k^(-0,637).

Постоянная норма (доля) накопления s = I/Y. s=0,07.

Из уравнения  найдем параметр μ. μ=0,09.


Итак, для построения замкнутой динамической модели развития экономики Солоу известны все параметры. Формула модели выглядит следующим образом:

С помощью этой формулы дифференциального уравнения 1-го порядка с управляющей переменной s можно задавать различные периоды времени и смотреть, как поведет себя при этом рыбная отрасль.

Заключение

Таким образом, мы выполнили поставленную цель курсовой работы, то есть изучили рыбную отрасль Российской Федерации с применением соответствующих разноаспектных методов.

Для реализации данной цели выполнили следующие задачи: провели анализ соответствующей литературы, выявили, какие изученные ранее экономические и математические модели могут быть пригодны для комплексного рассмотрения рыбной отрасли. Рассмотрели сильные и слабые стороны применения факторного анализа в эконометрике, а также возможности комплексных коллективных исследований, таких как метод “комиссий”, метод “Дельфи” или метод “коллективной генерации идей”.

Выявили характеристики отрасли, её особенности, которые помогли нам определиться с выбором модели для анализа. Описали технологический процесс развития рынка рыбной продукции лекарственных препаратов с 1999 по 2005 год, выявили факторы, влияющие на этот процесс, и построили многофакторную эконометрическую модель рынка лекарственных препаратов, которая выглядит следующим образом: ŷ = 287,265 +2,86*х1 -0,145*х5. Из полученного уравнения видно, что на производство рыбной продукции, тыс. тонн (фактор у) в большей степени влияют такие факторы как численность населения, на тыс. человек (фактор х1) и денежные доходы, млн. руб. (фактор х5). Причем при увеличении численности населения на тыс. человек на единицу производство рыбной продукции увеличится на 2,86 тонн, а при увеличении денежных доходов на 1 млрд руб. – уменьшится на 0,009 тонн.  Получили производственные функции для рыбной продукции РФ. Выяснили, что наиболее точно производственный процесс выпуска рыбной продукции описывает линейная производственная функция, имеющая вид: F(K,L)=-9652+1,223K+28,676L.

Построили статистическую и динамическую модели Леонтьева для рыбной отрасли РФ. Для динамической модели Леонтьева учли фактор инфляции за соответствующий период. Построили магистральную модель для рыбной отрасли РФ. Провели доработку модели Леонтьева и магистральной модели, используя выявленные ранее особенности рыбной отрасли РФ. В качестве предложений по усовершенствованию функционирования экономики в рамках модели Леонтьева можно представить следующее: увеличить коэффициент прямых затрат отрасли приборо- и машиностроения с 0,2 до 0,5, а, логистики, хотя бы до 0,1, что позволит автоматизировать производство рыбной продукции, проверку их качества, а также усовершенствовать каналы сбыта и скорость движения продукции. А предложением для магистральной модели – сделать модель более сбалансированной путем обеспечения постоянного во времени темпа роста выпуска рыбной продукции, зависящего от материальных затрат. Также мы получили модель Солоу для рыбной  отрасли РФ, выявив в ней экзогенные переменные.

Российская рыбная промышленность остро нуждается в привлечении иностранных инвестиций в комплексе с технологией и навыками современного управления. Рыбное производство России имеет перспективы привлечения иностранных инвесторов, однако необходимо активизировать этот процесс. Внедрение в отечественную рыбную промышленность гармонизированных с мировым сообществом правил GMP явится важным фактором содействия привлечению иностранных инвестиций. В России сделано уже многое для согласования требований к Рыбному производству с международными. Вместе с тем эту работу необходимо продолжить. Целесообразно шире использовать возможности международных организаций в этой сфере. Реализация изложенных предложений не требует ни капитальных затрат, ни объемных текущих расходов.

Список литературы:

 

1.                 Абланская Л.В. Экономико-математическое моделирование: учебник/под общ. ред. И.Н. Дрогобыцкого. – 2-е изд., стереотип. – М.: Издательство «Экзамен», 2006. – 798 [2] с. (Серия «Учебник для вузов»).

2.                 Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики: Учебник.- М.:ЮНИТИ,1998.

3.                 Елисеева  И. И. Социальная статистика – Москва, Финансы и статистика, 1997 год 

4.                 Елисеева И.И., Курышева С.В., Костеева Т.В. Эконометрика. Учебник, М.: Финансы и статистика, 2001 г.

5.                 Кундышева Е.С. Математическое моделирование в экономике: Учебное пособие / Под науч. Ред. проф. Б.А. Суслакова. – М.: Издательско-торговая корпорация «Дашков и К», 2004. – 352 с.

6.                 Кундышева Е.С. Математическое моделирование в экономике: Учебное пособие/ Под науч. ред. проф. Б.А. Суслакова. – М.: Издательско-торговая корпорация «Дашков и Ко», 2004. – 352 с.

7.                 Кэмпбелл Р. Макконнелл, Стенли Л. Брю Экономикс, принципы, проблемы и политика, М.: Республика, 1995

8.                 Мажутин В.И., Королева О.Н. Математическое моделирование в экономике: Часть III. Экономические приложения: Учебное пособие/В.И. Мажутин: – М.: Флинта: МГУ, 2004. – 176с.: ил.

9.                 Практикум по эконометрике: Учеб. Пособие/ И.И. Елисеева, С.В.Курышева, Н.М.Гордеенко и др.; Под ред. И.И.Елисеевой. М.: Финансы и статистика, 2002.

10.            Эконометрика: Учебник/И.И. Елисеева, С.В. Курышева, Т.В. Костеева и др.; Под ред. И.И. Елисеевой. – 2-е изд., перераб. И доп. – М.: Финансы и статистика, 2005. – 576 с.: ил.



Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.