Рефераты. Модернизация спирального гидроциклона СГМ-ТПИ






   установленную тангенциально к направлению вращения пульпы.

В ряде гидроциклонов (в гидроциклонах малых диаметров) отсутствует цилиндрическая часть, и исходный продукт (пульпа) вводится непосредственно в конус гидроциклона.

Наиболее широко применяются гидроциклоны первой из описанных конструкций.

Главной действующей силой является центробежная, возникающая благодаря тангенциальной подаче питания. Под действием центробежной силы сравнительно крупные и тяжелые частицы твердой фазы отбрасываются к стенке гидроциклона и затем разгружаются через песковую насадку, а наиболее тонкие и легкие частицы выносятся со сливом.


1. Классификация гидроциклонов


По конструктивным признакам все гидроциклоны можно разделить на следующие группы:

1. турбоциклоны.

2. открытые.

3. цилиндрические.

4. конические, получившие наибольшее распространение в промышленности, отличающиеся между собой:

а) способом выдачи слива через сливной патрубок, 

соединенный непосредственно с отводной трубой, или     

через приемник для слива. Иногда глубина погружения 

сливного патрубка плавно регулируется;

б) способом установки – вертикальные, горизонтальные и  наклонные;

в) углом конусности (5-90˚)

г) способом установки и конструкцией питающего патрубка;

д) относительной высотой цилиндрической части

 (от 0.2 до 1.5 диаметра гидроциклона);

е) конструкцией песковых насадок;

ж) числом выдаваемых продуктов – два и три.


1.1. Турбоциклоны


В турбоциклоне (центриконе) процесс разделения так же, как и в напорном гидроциклоне, осуществляется в поле действия центробежных сил. Разница состоит в том, что если в гидроциклоне вращение продукта внутри аппарата обуславливается его тангенциальным вводом, а напор необходимый для преодоления сопротивления на входе в аппарат и для разгрузки продуктов разделения, сообщается исходному продукту центробежным насосом, установленным перед гидроциклоном, то в турбоциклоне турбинка, расположенная в цилиндрической части аппарата, засасывает исходный продукт, придавая ему вращение и создавая напор, необходимый для разгрузки слива и разгрузочной жидкости.

Исходная пульпа (рис. 2, в) засасывается через питающий патрубок 3 турбинкой 4, установленной в цилиндрической части гидроциклона 2. Разгрузка происходит через сливной патрубок 5 и тангенциальный разгрузочный патрубок 6, находящийся в нижней части конуса 1.

При конструировании турбоциклона предполагалось, что замена насоса турбинкой снизит удельный расход электроэнергии. Практически это предложение не подтвердилось. Наличие вращающейся с большой скоростью турбинки и быстрый износ ее рабочих органов являются серьезным усложнением конструкции. Поэтому турбоциклоны не нашли широкого применения.

Рис. 2. Гидроциклоны: а)цилиндрический гидроциклон; б)цилиндроконический гидроциклон; в)турбоциклон; г, д)открытый гидроциклон.

1.2. Открытые гидроциклоны


Принцип действия открытого гидроциклона заключается в следующем.

Благодаря тангенциальному вводу весь исходный продукт в гидроциклоне находится во вращательно-поступательном движении, вследствие чего под действием возникающих в аппарате центробежных сил твердые частицы осаждаются на стенках.

Открытый гидроциклон (рис. 2, г) состоит и цилиндрической, открытой сверху части 1 и конической части 4. Исходный продукт подводится тангенциально в цилиндрическую часть через питающий патрубок 3. Сливной патрубок 2 состоит из центрально расположенной трубы, входящей коленом наружу через стенку гидроциклона. Разгрузочная жидкость удаляется через разгрузочную насадку 5.

По своим размерам открытые  гидроциклоны значительно больше напорных. Основное преимущество первых перед вторыми заключается в том, что благодаря сравнительно небольшим скоростям входа жидкости, потери напора в них составляют 0.5 - 0.7 м вод. ст.

К недостаткам открытых гидроциклонов следует отнести невозможность получения тонких сливов.


1.3. Цилиндрические гидроциклоны


По принципу действия цилиндрические гидроциклоны не отличаются от конических. Цилиндрический гидроциклон (рис. 2, а) состоит из цилиндрического корпуса  3, в который через тангенциальный питающий патрубок 1 вводится исходный продукт. Слив удаляется через патрубок 2, а разгрузочная жидкость  - через тангенциальный патрубок 4.

Предполагалось, что с упрощением конструкции эффективность работы аппарата существенно не измениться. Однако предположения не оправдались. Поэтому, если цилиндрический гидроциклон применяется для отделения твердой фазы от жидкости, его соединяют последовательно с коническим гидроциклоном (рис. 2, б). Тогда разгрузочный патрубок цилиндрического гидроциклона 1 является одновременно питающим патрубком конического гидроциклона 2. При работе цилиндроконического гидроциклона получаются три продукта разделения: слив цилиндрического гидроциклона, слив промежуточных продуктов и разгрузочная жидкость конического гидроциклона. Как показала практика, эта конструктивная модификация не дает существенного улучшения технологических показателей, хотя она более сложна по сравнению с коническими гидроциклонами.

1.4. Конические гидроциклоны


На рис. 3, а показан конический гидроциклон, в котором верхний слой разгружается через сливную камеру; на рис. 3, б – гидроциклон позволяющий отбирать две фракции сливаемого продукта, при этом один верхний сливной патрубок заменяется двумя концентрическими; на рис. 3, в, г – гидроциклоны, применяемые в нефтяной промышленности (с целью увеличения срока службы они изготавливаются из износостойкой резины, так, у гидроциклона на рис. 3, г коническая часть, а у гидроциклона на рис. 3, в цилиндрическая и коническая части резиновые); на рис. 3, д – гидроциклон, у которого  целью повышения эффективности разделения корпус выполнен в виде эллиптического цилиндра, сопряженного с эллиптическим конусом.

Гидроциклон, изображенный на рис. 3, е предназначен для осветления. С целью защиты внутренней поверхности от абразивного износа производится намораживание стенки гидроциклона ледяной самовосстанавливающейся коркой. Корпус гидроциклона снабжен теплоизолирующей рубашкой.

Для повышения эффективности работы гидроциклонов и для предотвращения забивания насадки добавочная вода подается в нижнюю часть гидроциклона (рис.3, ж) через симметрично расположенные тангенциальные отверстия небольшого диаметра таким образом, чтобы направление струи воды совпадало с направлением струи исходного продукта.

Рис.3 Конические гидроциклоны


Корпус гидроциклона изготавливается чаще литым, а иногда сварным или вытачивается из металла. Корпуса малых гидроциклонов диаметром меньше 250-350 мм отливаются целиком, а гидроциклонов больших размеров – из отдельных секций, фланцы которых соединяются между собой болтами. Преимуществом литых гидроциклонов перед сварными, является возможность изготовления литья из износоустойчивых материалов, простота изготовления (если не считать первоначальных работ на изготовление моделей и организацию производства).

Гидроциклоны малых размеров иногда изготавливают из алюминиевого литья с литой сменной резиновой футеровкой.

Угол конусности конической части гидроциклона принимается обычно 20˚.

Теоретические расчеты и опыт работы с гидроциклонами показывают, что более тонкий и менее загрязненный крупными зернами слив можно получить на гидроциклонах с углом конусности около 10˚.

Дальнейшее уменьшение угла конусности (например, до 5˚) не дает заметного улучшения технологических показателей, но приводит к резкому увеличению высоты аппарата.

Питающий патрубок должен устанавливаться непосредственно под крышкой строго по касательной к стенке гидроциклона. В сварных конструкциях конец патрубка перед сваркой подвергается косому срезу, чтобы он не заходил внутрь аппарата.

В литых конструкциях питающие патрубки отливаются как одно целое с цилиндрической частью корпуса. Питающий патрубок изготавливают обычно в виде трубы прямоугольного или круглого сечения, сужающейся по ходу движения пульпы (рис. 4).

В конструкциях треста Никополь-Марганец питающий патрубок не имеет сужения, а представляет собой цилиндрический отрезок трубы, приваренный к корпусу по касательной (рис. 4, б).

В циклонах Уфимского завода предусматривается возможность изменения размера питающего отверстия посредством сменных насадок (рис 4, в), поставляемых комплексно с гидроциклоном.  Для гидроциклонов сравнительно больших размеров ( 250 мм и более ) на практике отдают предпочтение патрубку прямоугольного сечения, сужающемуся к концу, с  расчетом, чтобы минимальная площадь поперечного сечения была приблизительно в 2-4 раза меньше площади сечения питающей трубы.

Такой патрубок должен обеспечивать более плавное поступление пульпы в гидроциклон. Для гидроциклонов малого размера целесообразно делать питающие патрубки круглого сечения ( во избежание забивания питающего отверстия). Установка питающих патрубков производится обычно параллельно плоскости днища гидроциклона. Имелись предложения о подаче пульпы в гидроциклон не через один патрубок, а через два и более.

Рис.4. Конструкции питающих патрубков:

а -конструкция института Механобр; б-конструкция треста Никополь-Марганец; в-со сменной клиновидной вставкой; г-конструкция УЗГО.


В конструкции гидроциклон  питание вводилось в гидроциклон не через патрубки, а через жалюзи в цилиндрической части.

Однако опытные данные показали, что увеличение числа питающих патрубков или питание через жалюзи не дали технологических преимуществ по сравнению с питанием через один патрубок, а только усложнили конструкцию циклона.

1.3.1Сливной (шламовый) патрубок.

 Сливные патрубки делают сменными, прикрепленными своими фланцами к днищу гидроциклона на шпильках или болтах. Удаление слива производится через сливную камеру (рис. 5, а) или непосредственно через трубу, являющуюся продолжением сливного патрубка (рис. 5, б).

В конструкциях, предусматривающих удаление слива через сливную камеру, последняя устанавливается таким образом, что в нее поступает слив, выбрасываемый с большой скоростью из сливного патрубка. Из сливной камеры слив удаляется по трубе, устанавливаемой тангенциально по направлению вращения пульпы. В зависимости от соотношения сечений сливного патрубка и отводной трубы, а также перепада высоты между верхним и нижним концами последней в сливной камере создается соответствующее статистическое давление (или вакуум). Для облегчения разгрузки песков иногда в центре крышки сливной камеры просверливается отверстие для подсоса воздуха или вставляется трубка, открытая с обоих концов.

В конструкции гидроциклонов, установленных на промывочной фабрике Высокогорного рудоуправления, предусматривается плавная регулировка глубины погружения сливного патрубка (рис. 5, в). Сливной патрубок 1 телескопического типа может перемещаться вдоль своей оси при помощи винта 2. Слив удаляется через боковую прорезь в патрубке, горизонтальный отводной патрубок 3 и кран 4, предназначены для изменения количества слива без остановки работы гидроциклона.

В гидроциклоне конструкции ДонУГИ слив удаляется через патрубок, расположенный в центральной части циклона вдоль его оси (рис. 5, г). Верхний конец патрубка находится вблизи днища циклона, приблизительно на уровне питающего патрубка или немного ниже его. Разгрузка слива производится снизу, рядом с песками. Такая конструкция сливного патрубка не может быть рекомендована для гидроциклонов – классификаторов из-за ее серьезных недостатков.


1.3.2.Песковые насадки

Песковые насадки служат для разгрузки песков из гидроциклонов. Их изготовляют в виде съемных конических насадок (рис. 6, а) с различными отверстиями для выхода песков или в виде резиновых затворов.

Рис. 5. Способы разгрузки слива


Вследствие значительного износа песковых насадок при работе их следует изготовлять из износоустойчивых материалов, а при конструировании их крепления – предусматривать возможность быстрой замены.

Для изготовления песковых насадок гидроциклонов применяют:отбеленный чугун, Ст. 3, легированный чугун с примесями марганца, никеля, хрома, резину № 8-ЛТИ Механобра и другие сорта резины, карборундовую крошку, цементированную бакелитом, каменное литье, карбиды кремния, бора и пластмассы.

Крепления песковых насадок в нижней части гидроциклона могут осуществляться различными способами. В большинстве случаев насадка прижимается отдельным фланцем к нижнему фланцу циклона. При таком способе крепления для смены насадки требуется остановка гидроциклона. Для смены насадок на ходу в некоторых конструкциях гидроциклонов предусматриваются обоймы, в которые вкладываются насадки с различными отверстиями (рис. 6, б). Передвижение обоймы позволяет быстро, без остановки гидроциклона, сменить песковую насадку. На Норильском комбинате смену насадок производят при помощи затворов (рис. 6, в). Применяют также резиновые затворы, которые позволяют производить плавную регулировку влажности и крупности песков на ходу.

Резиновые песковые насадки в затворах отличаются между собой конструкцией и способом их сжатия. Насадки, представляющие собой втулку из эластичной резины, могут быть сжаты в продольном направлении при помощи гайки (рис. 6, г).

Насадки в виде резиновой манжеты (рис. 6, д) сжимается сжатым воздухом, подаваемым от компрессора. Наибольшее давление, требуемое для работы насадки, 4-6 кг/см². Такие затворы применяют для автоматического регулирования загрузки песков.

Рис. 6. Крепление песковых насадок


При регулировке пескового отверстия без остановки работы гидроциклона применяют толстостенную резиновую насадку

В некоторых случаях применяют конические пробки (рис. 6, ж), позволяющие изменять количество песков на ходу. Но в связи с тем, что разгрузка производится здесь через щель, не исключена возможность забивания гидроциклона, особенно при работе на крупном материале, а также загрязнения слива крупными зернами, которые могут засасываться через отдельные участки щелевого пескового отверстия при наличии большого вакуума в циклоне.

     Таблица 1

Основные параметры гидроциклонов (рис. 7)


Параметры

ГЦ-5

ГЦ-7,5

ГЦ-15

ГЦ-25

ГЦ-36

ГЦ-50


   Диаметр,мм:

Гидроциклона

Питающего отверстия

Сливного отверстия

Пескового отверстия

Угол, конусность, градус

Производительность, м³/ ч (при давлении 1 кгс/см²)

Основные размеры, мм(не более):

Длина

Ширина

Высота

Масса гидроциклона, кг (не более):

литого

футерованного каменным литьем

футерованного резиной


    50


10-20

10-25

6-12


10


1-5




   400

250

600


     25

      -


-


75


15-30

15-38

8-17


10


2-12




   500

350

750


    40

     -


-


150


24-40

40-70

12-50


20


9-25




   650

400

950


  120

  110


   70


250


40-60

50-100

17-75


20


18-35




   800

550

1350


    260

    220


131


360


50-70

70-190

24-100


20


32-100




   900

700

1750


   430

   360


200


500


60-100

100-215

34-150


20


55-200




 1050

900

2300


   780

   600


327

 

Спиральный гидроциклон СГМ-ТПУ


Разработанный на кафедре техники и разведки ТПУ малогабаритный спиральный гидроциклон имеет ряд существенных преимуществ перед серийно выпускаемыми гидроциклонами:

- простота конструкции, регулировки, эксплуатации, монтажа, высокий ресурс работы;

- высокая степень очистки раствора от абразивных и недиспергированных глинистых частиц – 0.2%;

- незначительные потери промывочной жидкости через песковую насадку – до 2-3%;

- отсутствие автономного насоса и привода.

Назначение и устройство гидроциклона

Спиральный гидроциклон СГМ-ТПУ предназначен для промывочных жидкостей от

песка, грубодисперсных частиц поступающих в раствор вместе с глиной, и частиц выбуренной породы, которыми раствор обогащается в процессе бурения скважин.

Гидроцклон СГМ-ТПУ состоит из корпуса 7, с питающим штуцером 6, шнековой спирали 9, со сливным патрубком 8 для вывода очищенного раствора, конуса 2, заканчивающегося песковой насадкой 1 и регулировочными кольцами 3, 4, 5. Питающий штуцер 6 приварен касательно к корпусу 7. Кольцо 5 используется при производительности очистки 200-220 л/мин, при этом кольца 4, 3 – извлекаются. Кольца 4,5 ставятся при расходе 160 л/мин. Все три кольца 3,4,5 ставятся при расходе 100 л/мин. Для снижения износа колец песковой насадки их следует изготавливать из износостойких материалов.

Рис. 8. Спиральный гидроциклон СГМ-ТПУ

Принцип работы спирального гидроциклона СГМ-ТПУ

Принцип действия любого гидроциклона заключается в следующем. Исходная пульпа (раствор) подается в гидроциклон через питающую насадку, установленную по касательной к боковой поверхности цилиндрической части непосредственно под крышкой. Продукты классификации (твердая фаза и раствор) разгружаются соответственно через песковую насадку и сливной патрубок, расположенные по оси гидроциклона. Поток жидкости идет по спирали вдоль стенок конуса к песковой насадке, через которую выходит только часть общего потока. Гидроциклон быстро заполняется вращающейся жидкостью и вдоль его оси образуется вращающийся поток. При вращении пульпы шлам, песок и недиспергированные глинистые частицы за счет центробежных сил отбрасываются в периферийную зону, то есть к стенкам корпуса гидроциклона. Вблизи оси гидроциклона центробежная сила становится настолько большой, что жидкость разрывается, образуется воздушной ядро (вихревой шнур), имеющее вид воздушного столба. При нормальных условиях (достаточном давлении на входе, открытых разгрузочных отверстиях) воздушный столб возникает по всей высоте гидроциклона, соединяя по оси сливной патрубок и песковую насадку. Внешний вращающийся поток вместе с продуктами сепарации уходит через песковую насадку, основной внутренний поток поднимается вдоль воздушного столба и разгружается через сливной патрубок в емкость с очищенным раствором.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.