Рефераты. Модернизация, телекоммуникационного оборудования в ЗАО "Кузбассэнергосвязь"






Приведем расшифровку кабеля:

Оптические кабели марки ОМЗКГМ предназначены для прокладки в кабельной канализации, трубах, блоках, коллекторах, в грунтах всех категорий, кроме подверженных мерзлотным деформациям, через водные преграды, неглубокие болота и несудоходные реки.

Допустимая температура эксплуатации от минус 40 до плюс 60˚С.

В таблице 4.2 приведены характеристики кабеля ОМЗКГМ-10-01-0,22-24.


Таблица 4.2 – Характеристики кабеля ОМЗКГМ-10-01-0,22-24(7,0)

Параметр

Значение

Оптическое волокно

Одномодовое

Количество ОВ

24

Диаметр кабеля, мм

12,9…20,8

Масса, кг/км

258…859

Коэффициент затухания

на длине волны 1,55 мкм, дБ/км

0,22, не более

Хроматическая дисперсия

на длине волны 1,55 мкм, пс/нм∙км

18, не более

Допустимое растягивающее усилие, кН

7,0

Допустимое раздавливающее усилие, кН/см

0,6

Срок службы, лет

25, не менее

Строительная длина, м

5000, не более


5 Разработка структурной схемы организации связи

На схеме организации связи указываются оконечные пункты и транзитные пункты, где предусмотрено выделение, все мультиплексоры, установленные в этих пунктах, а так же соединения между ними.

Связь организуется по схеме «линейная цепь», с резервированием по схеме 1+1.

Исходя из рассчитанного числа потоков, на проектируемом участке необходимо организовать:

-        для телефонии: 190 двухмегабитных потоков;

-        для доступа в Internet: 316 двухмегабитных потоков.

Таким образом, на станции Кемерово организуется 506 двухмегабитных потоков, из которых в направлении:

Кемерово – Ленинск-Кузнецкий:

21Е1 – для телефонии, 10Е1 – для Internet;

Кемерово – Белово:

28Е1 – для телефонии, 10Е1 – для Internet;

Кемерово – Прокопьевск:

51Е1 – для телефонии, 20Е1 – для Internet;

Кемерово – Новокузнецк:

90Е1 – для телефонии, 276Е1 – для Internet.

Распределение нагрузки по сети указано на схеме организации связи, приведенной в Приложении Б.



6 Комплектация оборудования


Используя на центральном уровне матрицу кросс-коммутации SDH, оборудование OptiX OSN 3500 состоит из блока интерфейсов, блока SCC, блока обработки заголовков и вспомогательного блока интерфейсов. На рисунке 6.1 представлена структура системы OptiX OSN 3500. Функциональные и подчиненные платы соответствующих блоков приведены в таблице приложение В.

Рис. 6.1 – Конфигурация системы OptiX OSN 3500

 

Чтобы отвечать требованиям услуг разной емкости, OptiX OSN 3500 поддерживает работу различных плат: GXCS (с емкостью кросс-коммутации каналов высокого порядка: 35G и емкостью кросс-коммутации каналов низкого порядка:5G) и EXCS (с емкостью кросс-коммутации каналов высокого порядка: 60G и емкостью кросс-коммутации каналов низкого порядка:5G).

Мультиплексор OptiX OSN 3500 с двухрядным расположением модулей устанавливается в статив стандартизированный ETSI (2200мм х 600мм х 300мм), причем в одном стативе может быть размещено два мультиплексора OptiX OSN 3500 (730мм х 496мм х 295мм). Непосредственно на мультиплексоре все оптические выводы находятся на лицевой стороне оптических интерфейсных модулей. Подключение электрических интерфейсов, осуществляется в верхней части мультиплексора. На рисунке 6.2 показано распределение слотов оборудования OptiX OSN 3500. Платы обработки и платы интерфейсов располагаются в слотах как показано на рисунке 6.2 и в таблице 6.1.

Рисунок 6.2 – Размещение слотов оборудования OptiX OSN 3500


Ядром мультиплексора является не блокируемая, полнодоступная матрица временного коммутатора. Плата кросс-коммутации и синхронизации (EXCSA) обеспечивает кросс-коммутацию сигналов SDH и PDH и синхронизацию системы, слот 9 и 10, горячее резервирование 1+1.

Блок SCC – обеспечение интерфейса для соединения оборудования с системой сетевого управления и обработка сигналов SDH, слот 17 и 18, горячее резервирование 1+1.

Блок источника питания PIU обеспечивает доступ к источнику питания и защиту оборудования от скачков напряжения, слот 27 и 28, горячее резервирование 1+1.

Вспомогательная плата интерфейсов AUX обеспечивает различные интерфейсы для технического обслуживания: интерфейс RS-232 и интерфейс служебного телефона, слот 37.

Платы кросс-коммутации и синхронизации, плата сетевого управления, блок источника питания, вспомогательная плата интерфейсов являются неотъемлемой частью мультиплексора, комплектация мультиплексора остальными платами осуществляется от конкретного применения данного мультиплексора.

Поскольку в Кемерово необходимо осуществить ввод/вывод 190Е1, и 316Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, семь плат PQ1 63хЕ1, четыре рабочих, одна резервная;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.

В Новокузнецке необходимо осуществить ввод/вывод 90Е1, и 276Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, платы оптического линейного тракта STM-4 интерфейс V-4.2, SL-4, две платы и три платы PQ1 63хЕ1;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.

В Белово необходимо осуществить ввод/вывод 28Е1, и 10Е1 Ethernet, то комплектация будет следующей:

-                     две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, плата оптического линейного тракта STM-4 интерфейс V-4.2, SL-4, плата STM-1 интерфейс V-1.2, SL-1L и четыре платы D12В 32хЕ1;

В Прокопьевске необходимо осуществить ввод/вывод 51Е1 , и 20Е1 Ethernet,

то комплектация будет следующей :

-                              две платы SL-16, платы оптического линейного тракта STM-16, интерфейс V-16.2, V-1.2, SL-1L и четыре платы D12В 32хЕ1;

-                     одна плата EFS4, плата интерфейса Fast Ethernet 4 порта с коммутатором.


6.1 Расположение оборудования на объектах “Кузбассэнергосвязь”

ЦУС (г. Кемерово)

Рисунок 6.4. Комплектация мультиплексора OptiX OSN 3500 в узле Кемерово.


ЮЭС (г.Новокузнецк)

Рисунок 6.5. Комплектация мультиплексора OptiX OSN 3500 на узле города Новокузнецка.

Подстанция НК-500 (г.Прокопьевск)

Рисунок 6.6. Комплектация корзины на узеле связи в Прокопьевске.

ЦЭС1 (г. Белово)

Рисунок 6.7. Комплектация мультиплексора OptiX OSN 3500 на узле города Белово.


Подстанция Ново-Ленинская. (г.Ленинск-Кузнецкий)

Рисунок 6.9. Комплектация корзины на узеле связи в Ленинск-Кузнецком .



Таблица 6.1. Комплектация узлов.

Платы

Кемерово

Белово

Новокузнецк

Прокопьевск

Ленинск-Кузн.

ЗИП

Всего

GXCA

2

4

2

2

2

3

15

SCC

2

2

2

2

2

3

13

AUX

1

1

1

1

1

3

8

PIU

2

2

2

2

2

3

13

SL-16

2

2

2

2

2

3

13

SL-4

2

2

2

2

-

3

11

SL-1

1

1

-

-

-

2

4

PQ1

7

4

4

2

2

10

29

D12B

-

-

-

-

3

10

13

EFS4

1

1

1

1

1

2

7

EFS0

-

-

-

-

-

1

1

ETSI

1

1

1

1

1

-

5


7 Расчет параметров надежности ВОСП

Требуемая быстрота и точность передачи информации средствами электросвязи обеспечиваются высоким качеством работы всех звеньев сети электросвязи: предприятий, линий связи, технических средств. Обобщающим показателем качества работы средств связи является надежность.

Надёжность – одна из важнейших характеристик современных магистралей и сетей связи общего пользования. Особенно высокие требования по надёжности предъявляются к кабельным магистралям с большой пропускной способностью, к которым относятся волоконно-оптические кабели (ВОК). Надёжность ОК – свойство сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения.

Основными нормативными показателями надежности работы являются:

-        наработка на отказ;

-        коэффициент готовности;

-        время восстановления.

Наработка на отказ (Т0) – среднее значение времени наработки между двумя последовательными отказами.

Коэффициент готовности (Кг) – вероятность нахождения объекта технической эксплуатации (ОТЭ) в исправном состоянии в произвольно выбранный момент времени, кроме планируемых периодов, в течение которых он подвергается профилактическому контролю, определяемый по формуле:

,                                                        (7.1)

где Кп – коэффициент простоя, вероятность нахождения линии в произвольно выбранный момент времени, кроме планируемых периодов, в состоянии отказа. При существующей на эксплуатации стратегии восстановления, начинающегося с момента обнаружения отказа (аварии) коэффициент простоя (неготовности) определяется по формуле:

,                                       (7.2)

где  – интенсивность отказов ОК за 1 час на длине трассы;

Тв – время восстановления, продолжительность восстановления

работоспособности ОТЭ после отказа.

Требуемые показатели надёжности внутризоновой первичной сети (ВзПС) с максимальной протяжённостью Lм (без учета резервирования) приведены в таблице 7.1 в соответствии с РД 45.047-99.


Таблица 7.1 – Показатели надежности для ВзПС, Lм = 1400 км

Показатель

надежности

Канал ТЧ или ОЦК независимо от применяемой системы передачи

Канал ОЦК на перспективной

цифровой сети

АЛТ

Коэффициент готовности

> 0,99

> 0,998

0,99

Среднее время

между отказами, час

> 111,4

> 2050

> 350

Время

восстановления, час

< 1,1

< 4,24

см.

примечание


Примечание: для оборудования линейных трактов на ВзПС и СМП должно быть:

-        время восстановления необслуживаемого регенерационного пункта НРП – Тв нрп < 2,5 часов (в том числе время подъезда ремонтной бригады – 2 часа);

-        время восстановления обслуживаемого регенерационного пункта ОРП, ОП – Тв орп < 0,5 часа;

-        время восстановления ОК – Тв ок < 10 часов (в том числе время подъезда ремонтной бригады – 3,5 часа).

Произведем расчет параметров надежности проектируемой магистрали Кемерово-Новокузнецк для канала ОЦК (основного цифрового канала) и кабельной линии.

Учитывая, что средняя плотность отказов (), на 100 км кабеля, в год равна 0,34 (по статистике для подземных кабелей), рассчитаем интенсивность отказов ОК за 1 час на длине трассы ВОЛС.

Интенсивность отказов определяется по формуле:

,                                        (7.3)

где L – длина проектируемой трассы, равна 247 км;

8760 – количество часов в году.

 = 0,123 × 10-3

При длине канала (магистрали) L не равной Lм, среднее время между отказами определяется как:

,                                          (7.4)

где L – длина проектируемой ВОЛС, км;

Т0 – среднее значение времени между отказами, часов;

Т0 и Lм – данные из таблицы 7.1

По формуле 7.4 рассчитаем среднее время между отказами:

 = 1541 час

По формуле 7.2 рассчитаем коэффициент простоя:

 = 1,228 × 10-3

По формуле 7.1 рассчитаем коэффициент готовности:

= 0,99


Определим параметры надежности (Т0(L), Кп, Кг) для канала ОЦК по формулам (7.1), (7.2), (7.4):

 = 9025 часов

 = 0,521 × 10-3

= 0,999

В результате расчетов можно сделать вывод, что проектируемая кабельная магистраль, способна выполнять заданные функции с необходимым качеством.

Полученные значения параметров надежности полностью удовлетворяют нормативным.


8 Расчет оптических и передаточных параметров оптического кабеля

8.1 Расчет оптических параметров кабеля


Основным элементом оптического кабеля является волоконный световод – круглый стержень из оптически прозрачного диэлектрика. Оптические волноводы из-за малых размеров поперечного сечения обычно называют волоконными световодами или оптическими волокнами (ОВ).

Оптическое волокно состоит из сердцевины, по которой распространяются световые волны и оболочки. Сердцевина служит для передачи световых волн. Назначение оболочки – создание лучших условий отражения на границе «сердцевина-оболочка» и защита от излучения энергии в окружающее пространство. С целью повышения прочности и тем самым надежности волокна поверх оболочки накладывается первичное защитное упрочняющее покрытие.

Для передачи электромагнитной энергии по световоду используется явление полного внутреннего отражения на границе раздела двух сред. Эффект полного внутреннего отражения реализуется в световодах при соблюдении условия:

,                                           (5.1.1)

где - показатель преломления сердцевины оптического волокна,

- показателя преломления оболочки оптического волокна.

На рисунке 8.1 изображено распространение лучей в оптическом волокне.

Рисунок 8.1 – Распространение лучей в оптическом волокне.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.