Рефераты. Проектирование промышленно-отопительной котельной для жилого района







5. Тепловой расчет паропровода


Прокладка паропровода надземная, поэтому расчетная температура окружающей среды соответствует температуре наружного воздуха при максимальном зимнем режиме (tно).

Паропровод полностью изолирован, задвижки изолированы на ѕ от их площади поверхности, компенсаторы изолированы полностью.

Результаты теплового расчета сведены в таблицу 5.


Таблица 5

Расчетная

величина

Обознач.

Размерн.

Расчетная формула или метод

определения

Номер участка

1

2

3

4

5

Расход пара на участке

D

кг/с

По заданию

  25

16,7

    8,3

    8,3

    8,3

Длина участка

L

м

То же

750

500

320

90

100

Удельная потеря теплоты с 1 м изолированного паропровода

q

Приложение 3[2]

1,67

1,56

1,32

1,32

1,32

Эквивалентная длина задвижки

м

Принимается в диапазоне 4…8

5

Количество нормальных задвижек на участке

---

По заданию

1

Эквивалентная длина опор

м

(10…15%)∙L

80

40

30

11

14

Суммарная эквивалентная длина местных тепловых потерь

м

85

45

35

16

19

Температура пара в начале участка (от источника)

t1

Принимается

184

174

169

174

169

Температура пара в конце участка (от источника)

t2

Табл. II [4]

174

169

165

165

165

Средняя температура пара на участке

tср

179

171,5

167,5

169,5

167,5

Средняя массовая теплоемкость пара на участке

Ср

Табл. V [4]

2,603

2,526

2,484

2,504

2,484

Средняя удельная теплота парообразования на участке

rср

Табл. I [4]

2018

2042

2057

2050

2057

Потери тепла на участке

Q

кВт

314,8

142,7

89,1

50,6

42,3

Температура пара в конце участка (от источника)

t’2

174,3

167

162

167

165

Погрешность определения температуры

d

%

0,1

1,1

1,8

1,8

0

Полученная погрешность удовлетворяет допустимой (2%)

                         

6 Расчет тепловой схемы котельной


6.1 Расчет тепловой схемы паровой части котельной


Наиболее целесообразно установить в котельной как паровые, так и водогрейные котлы. Паровая часть котельной обеспечивает круглогодичную нагрузку (технологическую и нагрузку горячего водоснабжения), а водогрейная – нагрузку отопления и вентиляции.

Рассчитано для tн = tно = -340С. Результаты расчета сведены в таблицу 6.


Таблица 6

Расчетная

величина



Расчетная формула или метод определения

Температура наружного воздуха

tно

tнхм

tни

+8

Летний режим

Расчетная температура наружного воздуха

tн.в.

оС

Приложение 1

-34

-15,1

+3,8

+8

>+8

Давление технологического пара

Pтех

МПа

По заданию

0,7

Технологическая нагрузка

Dтех

кг/с

То же

12,5

Доля возвращаемого конденсата

m

%

-«-«-

70

Температура возвращаемого конденсата

tтех

-«-«-

80

Солесодержание котловой воды

Sкв

мг/кг

-«-«-

5000

Солесодержание химически очищенной воды

мг/кг

Рекомендации из [5]

500


Энтальпии пара при давлениях:

1,4 МПа

0,76 МПа

0,15 МПа

0,12 МПа



i”1.4

i”0.76

i”0.15

i”0.12

кДж/кг

Табл. II [4]



2788,4

2766

2693,9

2683,8

Энтальпия

исходной воды

iив

кДж/кг

20,95

62,85

Энтальпия технологического конденсата

кДж/кг

251

Энтальпия питательной воды

кДж/кг

377,1

Энтальпия воды в деаэраторе

i’0.12

кДж/кг

419

Энтальпия насыщенной воды при Р=0,15 МПа

кДж/кг

По таблице II

467,13

Энтальпия котловой воды при Р=1,4 МПа

кДж/кг

По таблице II

830,1


Энтальпия конденсата после паровых подогревателей



кДж/кг


Табл. I [4] для t42 = 900C


376,94

Расход технологического конденсата с производства

Gтех

кг/с

8,75

Потери технологического конденсата

Gптех

кг/с

3,75

Потери пара в схеме

Кг/c

0,375

Расход пара на  собственные нужды

Dсн

кг/с

зимний

летний

1,5

1

Паропроизводительность

(0,76 МПа)

кг/с

14,38

13,86

Потери пара и конденсата в схеме

кг/с

4,125

Доля потерь теплоносителя

Пх

---

0,287

0,298

Процент продувки

Pп

%

2,9

3,1

Расход питательной воды на РОУ

GРОУ

кг/с

0,134

0,129

Производительность по пару

Р = 1,4 МПа

Dк1.4

кг/с

14,25

13,73

Расход продувочной воды

Gпр

кг/с

0,41

0,43

Расход пара из сепаратора продувки

Dc0.15

кг/с

0,067

0,07

Расход воды из сепаратора продувки

GСНП

кг/с

0,343

0,36

Расход воды из деаэратора питательной воды

кг/с

14,79

14,29

Расход выпара из деаэратора питательной воды

Dвып

кг/с

0,03

0,029

Суммарные потери сетевой воды, пара и конденсата

Gпот

кг/с

4,498

4,514

Расход химобработанной воды после 2-й тупени

кг/с

4,498

4,514

Расход исходной воды

Gисх

кг/с

18,86

18,51

20,24

16,56

10,12

Температура воды после Т№1

6.3

6.3

6,2

6,5

17,5

Температура греющей воды после охладителя продувочной воды (Т№1)

104,75

Расход пара на Т№2

D2

кг/с

0,619

0,607

0,667

0,537

  0,133

Температура воды на входе в охладитель деаэрированной воды (Т№4)

t41

57,12

  58,34

Расход пара на Т№3

D3

кг/с

0,243

  0,244

Температура ХОВ после охладителя выпара питательного деаэратора

t52

94

94

94

94

94

Расход пара на деаэратор горячего водоснабжения

кг/с

0,543

0,547

0,525

0,572

  0,597

Расчетный расход пара на собственные нужды

кг/с

2,209

2,18

2,32

2,021

1,24

Расчетная паропроизводительность

кг/с

14,53

14,52

14,58

14,48

14,12

Ошибка расчета

D

%

1,1

1

1,4

0,7

1,8

Полученная погрешность удовлетворяет допустимой (2%)

Исходя из производительности котельной по пару с давлением P = 1,4 МПа, необходимо выбрать котельные агрегаты. Для обеспечения потребности по пару выбираю следующий тип котлов средней мощности:

Е-50-14

Краткая характеристика [3]:

1. Изготовитель з-д «Энергомаш» г. Белгород;

2. Паропроизводительность 50 т/ч;

3. Давление насыщенного пара 1,4 МПа;

4. Температура уходящих газов 1400С (для работы на газе).

Необходимое количество котельных агрегатов:


6.2 Расчет тепловой схемы водогрейной части котельной


Задача водогрейной части котельной – подготовить сетевую воду для покрытия нагрузок отопления и вентиляции. Нагрузку ГВС, восполнение потерь из тепловой сети, а также химическую обработку и нагрев подпиточной воды до необходимой температуры обеспечивает паровая часть котельной.

Подпиточная сетевая вода забирается из баков-аккумуляторов и вводится за водогрейными котлами. После котлов сетевая вода отпускается потребителю.

В летнем режиме водогрейные котлы остановлены.

Для расчета тепловой схемы данной части котельной необходимо выбрать котельные агрегаты. Максимальное число работающих котлов будет в максимально зимнем режиме

Таблица 7

Расчетная

величина



Расчетная формула или метод определения

Расчетные режимы

+8

>+8

Тепловая нагрузка на ГВС

МВт

Из пункта 1

91,1

91,1

91,1

91,1

58,3

Тепловая нагрузка на отопление

МВт

176,175

114,51

77,65

39,15

0

Тепловая нагрузка на вентиляцию

МВт

21,141

13,74

9,32

4,7

0

Производительность котельной

МВт

288,416

219,35

178,07

134,95

58,3

Расход воды на подпитку и потери в тепловой схеме

кг/с

8,65

6,58

5,34

4,05

1,75

Общая тепловая мощность котельной

МВт

297,07

225,93

183,41

139

60,05

Температура прямой сетевой воды на выходе из котельной

Из пункта 2

150

119

80

80

80

Температура обратной сетевой воды на входе в котельную

24

29

15

15

15

Общий расход сетевой воды

кг/с

566

214

Расход воды через котлы

кг/с

886

597

Расход воды на подпитку и потери в тепловой схеме

кг/с

11,3

4,3

Температура воды на выходе из котла (при )

150

131

119

107

94

Расход воды на собственные нужды

кг/с

25,8

25,8

25,8

25,8

25,8

Расход воды на линии рециркуляции

кг/с

323

356

469

530

416

Расход воды по перемычке

кг/с

0

68

245

146

20

Расход хво после первой ступени

кг/с

11,3

4,3

Расход пара на теплообменник

№ 6 

кг/с

0,804

0,783

0,885

0,669

0,29

Расход выпара из деаэратора

кг/с

0,024

0,023

0,026

0,02

0,009

Температ. воды после охладителя выпара

оС

64,6

64,6

64,6

64,6

64,6

Расход греющей воды на деаэрацию

кг/с

2,15

2,3

3,54

3,7

4,1

Расход воды на собственные нужды

кг/с

2,15

2,3

3,54

3,7

4,1

Расход воды через котельный агрегат


кг/с

875

877

878

880

586

Относительная погрешность

%

1,3

1,02

   0,91

0,68

1,8


По тепловой нагрузке производим выбор водогрейных котлов:-ставим 3 котла КВГМ-100-150 (, расчетная температура на выходе из котла 150єС).


7 Выбор теплообменного оборудования


7.1 Выбор деаэраторов


Для дегазации питательной  воды в паровой части котельной установлен деаэратор атмосферного типа. Производительность питательного деаэратора равна 14,79 кг/с (61,97 т/ч).

Деаэраторы типа ДА обеспечивают устойчивую деаэрацию воды при работе с нагрузками в пределах от 30 до 120% номинальной производительности. Деаэраторы типа ДА укомплектовываются индивидуальными охладителями выпара и могут быть поставлены без деаэраторного бака [3].

Для деаэрации питательной воды паровых котлов необходим один атмосферный деаэратор типа ДА-75-15

Краткая характеристика [3]:

1 Номинальная производительность 75 т/ч;

2 Номинальное рабочее давление 0,12 МПа;

3 Полезная емкость деаэраторного бака 15 м3.

Для деаэрации подпиточной воды (расход 519 кг/с=1868,1 т/ч) тепловых сетей необходимо  четыре вакуумных деаэратора типа ДСВ-2000

Краткая характеристика [3]:

1 Номинальная производительность 2000 т/ч;

2 Номинальное рабочее давление 0,0075 МПа;


7.2 Выбор подогревателей


Выбор теплообменников следует производить, исходя из их расчетной площади теплообмена. При этом коэффициент теплопередачи ориентировочно можно принимать в пределах от 2500 до 3000 ккал/(м2ч0С) для подогревателей с латунными трубками при достаточной чистоте поверхностей нагрева.

С учетом загрязнения трубок слоем накипи коэффициент теплопередачи равен 1700 - 1800 ккал/(м2ч0С) [3].

Для ориентировочных расчетов поверхности нагрева всех теплообменных аппаратов принимаю коэффициент теплопередачи равным 2500 Вт/(0С м2).

Охладители выпара

Тепловые нагрузки на охладители выпара:

Среднелогарифмический температурный напор:

Поверхность теплообмена:

В качестве охладителей выпара для теплообменников №5 и №7 предлагаю установить следующие теплообменники: ОВА-2/0,22, ОВВ-2/0,22

Краткая характеристика охладителей выпара:

1 ОВА-2/0,22. Рабочее давление в корпусе/трубной системе 0,12/0,5 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 40-104/10-80єС, поверхность охладителя 2 м2, масса 220 г.

2 ОВВ-2/0,22. Рабочее давление в корпусе/трубной системе 0,01-0,12/0,4 МПа, пробное давление 0,7 МПа, рабочая температура в корпусе/ в трубной системе 104/50-80єС, поверхность охладителя 2 м2, масса 220 кг


Подогреватели исходной и химочищенной воды


Необходимо рассчитать площади теплообмена для следующих теплообменных аппаратов:

- охладитель продувочной воды (Т№1);

- подогреватель исходной воды (Т№2);

- подогреватель исходной воды (Т№4);

- подогреватель химочищенной воды после II ступени ХВО (Т№3);

- подогреватель химочищенной воды после I ступени ХВО (Т№6).


Таблица 8

Расчетная

величина



Расчетная формула или метод определения

Номер теплообменного аппарата

1

2

3

4

6

Тепловая нагрузка

Q

кВт

764

3083

3083

237,1

3083

Наибольшая разность температур теплоносителей

DtБ

107

162,7

144

10

144

Наименьшая разность температур теплоносителей

DtМ

 

33,7

65

32,9

2,9

30

Среднелогарифмический температурный напор

Dt

63,5

106,6

75,3

5,7

72,8

Коэффициент теплопередачи

k

Рекомендации [3]

2500

Поверхность теплообмена

F

м2

4,9

11,8

16,7

17

17,3


Для теплообменника Т№1 выбираю водяной подогреватель под номером 10 (таблица 2,144.[8]).

Краткая характеристика:

1 Площадь поверхности нагрева секции 6,9 м2.

2 Давление 1,6 МПа.

3 Число латунных трубок 37, Dн = 168 мм.

Для теплообменника Т№2 и Т№3 выбираю пароводяной подогреватель под номером 2 (таблица 2.143.[8]).

Краткая характеристика:

1 Площадь поверхности нагрева секции 17,2 м2.

2 Длина корпуса 3,63 мм.

3 Число латунных трубок 124, Dвч = 412 мм.

Для теплообменников Т№4 выбираю водо-водяной подогреватель под номером 14 (таблица 2.144.[8]).

Краткая характеристика:

1 Площадь поверхности нагрева секции 20,3 м2.

2 Давление 1,6 МПа.

3 Число латунных трубок 109, Dн = 273 мм.

Для теплообменника Т№6 выбираю пароводяной подогреватель под номером 3 (таблица 2.143.[8]).

Краткая характеристика:

1 Площадь поверхности нагрева секции 24,4 м2.

2 Длина корпуса 3,75 мм.

3 Число латунных трубок 176, Dвч = 466 мм.

Используемая литература


1.                  Соколов Е.А. Теплофикация и тепловые сети. – М.: Энергоиздат, 1982.

2.                  Есина И.В., Грибанов А.И. Источники и системы теплоснабжения промышленных предприятий. – Челябинск: ЧГТУ, 1990.

3.                  Бузников Е.Ф., Роддатис К.Ф., Берзиньш Э.Я. Производственные и отопительные котельные. – М.: Энергоатомиздат, 1984.

4.                  Ривкин С.Л., Александров А.А. Термодинамические свойства воды и водяного пара. Справочник. – М.: Энергоатомиздат, 1984.

5.                  Кириллов В.В. Лекции по курсу «Источники и системы теплоснабжения».

6.                  Тепловой расчет котельных агрегатов (нормативный метод). – М.: Энергия, 1973.

7.                  Григорьев В.А., Зорин В.М. Тепловые и атомные электрические станции. Справочник. – М.: Энергоатомиздат, 1989.

8.                  Смирнов А.Д., Антипов К.М. Справочная книжка энергетика. – М.: Энергоатомиздат, 1984.



Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.