Рефераты. Передача дискретных сообщений






В передатчике мы имели дело с сигналом, имеющим две составляющие - косинусную (синфазную) и синусную (квадратурную). Поэтому после преобразования тактовой частоты сигнал в блоке “фазовый расщепитель” подвергается разделению на две составляющие. Синфазная составляющая является копией входного сигнала, а квадратурная получается в результате изменения фаз всех спектральных составляющих входного сигнала на 90 градусов .

На схеме входной сигнал фазового расщепителя изображен одной стрелкой, а выходной - двумя, так как выходной сигнал имеет две составляющие (синфазную и квадратурную). Для удобства описания такого сигнала используют комплексные числа ( комплексное число также имеет две части: вещественную и мнимую). Говорят, что фазовый расщепитель осуществляет переход к комплексному аналитическому сигналу. При этом подразумевают, что синфазная составляющая - это вещественная, а квадратурная - мнимая части комплексного аналитического сигнала.

Проходя через телефонный канал, сигнал передатчика удаленного модема подвергается сильным искажениям. Основной составляющей этих искажений являются линейные искажения, которые в спектральной области проявляются в виде неравномерного затухания и задержки различных частотных составляющих передаваемого сигнала, а во временной области проявляются как межсимвольная интерференция, т.е. влияние соседних передаваемых символов друг на друга. Это влияние настолько велико, что без компенсации линейных искажений невозможен прием сигнала даже на самых низких скоростях. Поэтому с целью компенсации линейных искажений сигнала в приемнике модема по рекомендации V.32bis ставится адаптивный корректор. По своей структуре он очень похож на эхокомпенсатор и также является адаптивным трансверсальным фильтром, содержащим линию задержки и набор весовых коэффициентов. Во время приема сигнала адаптивный корректор постоянно подстраивается, отслеживая медленные изменения характеристик телефонного канала.

После компенсации линейных искажений сигнал с выхода адаптивного корректора поступает на вход демодулятора, который осуществляет операцию, обратную модулятору передатчика. Как видно из рисунка, работой демодулятора управляет блок оценки частоты несущей. Мы уже говорили, что частота несущей в модемах по рекомендации V.32bis равна 1800 Гц. Тогда возникает вопрос: зачем оценивать частоту несущей, которая и так известна? Проблема в том, что, хотя передатчик удаленного модема действительно использует частоту 1800 Гц при модуляции, сигнал, проходя через телефонный канал, подвергается действию факторов, приводящих к смещению несущей частоты. И хотя это изменение достаточно мало (порядка 0,3 %), необходимо его компенсировать. К примеру, если в телефонном канале произошло смещение частоты на 5 Гц, то частота демодулятора должна быть уже не 1800 Гц, а 1795 Гц. Смещение частоты для различных каналов ТЧ имеет разную величину и может меняться в процессе передачи данных. Поэтому во время процедуры начального соединения каждый из модемов оценивает частоту несущей и продолжает ее подстраивать в процессе передачи .

С выхода демодулятора на вход декодера поступает комплексный сигнал, каждый отсчет которого соответствует какому-либо положению на плоскости сигнального созвездия. На сигнальном созвездии присутствуют так называемые разрешенные значения, т.е. те значения, которые могут передаваться передатчиком. Задача декодера состоит в том, чтобы по входному демодулированному комплексному отсчету выбрать одно из разрешенных значений на сигнальном созвездии.

Если бы не существовало искажений и шумов в канале связи, а также шумов алгоритмов обработки сигнала в передатчике и приемнике, то сигнал на выходе демодулятора в точности соответствовал бы разрешенным значениям сигнального созвездия. Однако в реальной ситуации это невозможно. И принимаемый сигнал попадает в некоторую окрестность от передаваемого. Если шум невелик и приемник работает без ошибок, принимаемые сигнальные точки, хотя и не совпадают в точности с переданным значением, однако находятся к нему ближе, чем ко всем другим разрешенным значениям. В этом случае ошибки не происходит. Если же принятая сигнальная точка оказывается в окрестности разрешенного значения, отличного от переданного, то решающее устройство принимает неверное решение и происходит ошибка. Описанный метод принятия решения достаточно нагляден и очевиден: считается, что передавалось то из разрешенных значений, которое наиболее близко к принятой сигнальной точке.

Однако, в модеме по рекомендации V.32bis, используется решетчатое кодирование, и поэтому применяется более эффективный алгоритм. Сверточный кодер на передаче специальным способом вводит связь между последовательными передаваемыми отсчетами, и при принятии решения кроме текущей сигнальной точки учитывается некоторое количество предыдущих. Такой алгоритм называется декодированием по Витерби. Этот алгоритм гораздо сложнее тривиального решающего устройства, описанного ранее, но зато обеспечивает более высокую помехоустойчивость приема. После декодирования сигнал в виде последовательного потока бит подается на дескремблер, осуществляющий операцию, обратную скремблеру передатчика. С выхода дескремблера дискретные данные передаются на выход приемника модема (это не означает, что выход дескремблера непосредственно подключается к компьютеру, далее сигнал может обрабатываться протоколом сжатия и коррекции ошибок V.42bis, протоколом V.24 и др.)


3.

Вероятности ошибочного приема единичного элемента при различных видах модуляции:

h = ;  = 16дБ = 39,8р.

h = 6,3

Рош ( АМ ) = 0,5·(1-Ф(h/Ö2)) = 0,5·(1-Ф(4,45)) = 4,6·10-10

Рош ( ЧМ ) = 0,5·(1-Ф(h)) = 0,5·(1-Ф(6,3)) = 6,52·10-10

Рош ( ФМ ) = 0,5·(1-Ф(hÖ2)) = 0,5·(1-Ф(8,91)) = 9,22·10-10

Рош ( ОФМ ) = 1-Ф2(hÖ2) = 1-Ф2(8,91)) = 1,9·10-19


Пропускная способность непрерывного и дискретного каналов:

Сд = В(log m + (P/(m-1))logP + (1-P)log(1-P)),

При m=2; Сд = В(1 + P logP + (1-P)log(1-P)),

В = 2400 бод.

( АМ ) Сд = В = 2400 бит/с,

( ЧМ ) Сд = В = 2400 бит/с,

( ФМ ) Сд = В = 2400 бит/с,

( ОФМ ) Сд = В = 2400 бит/с.


Сн = DF log(1+Рс/Рш),

Сн = 3100 log(1+6,3) = 3100 · 0,863 = 2676 бит/с.


Коэффициент использования КТЧ:

Ки = С/Вмах;

Ки ам = Ки чм = Ки фм = Ки офм = 2400/2400 = 1

Для непрерывного канала Вмах = 2DF = 6200,

Ки = 2676/6200 = 0,43.


Задача №3.


1. КОА с групповым кодеком.

Структурная схема каналообразующей аппаратуры ЦСП с ИКМ, предназначенной для передачи аналоговых (речевых) сигналов, приведена на рис.3.1.

рис 3.1.

Тракт передачи аппаратуры.

Поступающие на двухпроводные входы N каналов ТЧ, передаваемые речевые сигналы N абонентов через ДС каналов поступают на входные усилители, где нормализуются по уровню передачи. Ограниченый по спектру с помощью ФНЧ-3,4 сигнал подвергается дискретизации повремени в канальном модуляторе АИМ-1, который представляет собой электронный ключ. Работой ключей управляют канальные импульсы от генераторного оборудования, сдвинутые

друг относительно друга на величину канального интервала Т. Частота следования этих импульсов в канале равна частоте дискретизации fд =8 кГц. В результате получается канальный сигнал АИМ с интервалом между импульсами 125 мкс. Такие сигналы объединяются с аналогичными сигналами других каналов, т.е. формируется групповой сигнал АИМ, который поступает в групповой АИМ-тракт. В групповом усилителе ГУС-1 импульсы АИМ-1 усиливаются, а затем преобразуются в импульсы АИМ-2, т.е. расширяются по длительности и приобретают плоскую вершину. Это необходимо для последующего их кодирования.

Частота следования импульсов группового сигнала АИМ определяется произведением fгр =fд x(N+2), где (N+2) - общее число канальных интервалов в КОА. Для аппаратуры первичной ЦСП fгр =8х(ЗСН-2)=8х32=256 кГц. Через усилитель ГУС-2 групповой сигнал АИМ-2 поступает на вход кодирующего устройства. В кодере выполняющем функции квантования сигналов по уровню и кодирования квантовых сигналов, каждый импульс группового сигнала АИМ-2 с помощью m-значного кода преобразуется в кодовую группу, последовательность которых образует импульсно-кодовый сигнал в цифровой форме, т.е. цифровой групповой сигнал. Этот информационный сигнал 30-ти каналов ТЧ в устройстве ФГС объединяется с двумя кодовыми группами служебных сигналов. К последним относятся:

- сигналы цикловой и сверхцикловой синхронизации;

- сигналы управления и взаимодействия (СУВ);

- сигналы дискретной информации (телеграфной связи);

- сигналы телеконтроля и аварийной сигнализации. На выходе ФГС образуется цифровой групповой сигнал первичной ЦСП с тактовой частотой следования кодовых символов

fт =fд *(N+2)*m=8*32*8=2048кГц. В выходном устройстве этот сигнал проходит ПКпер , ФЛС и далее поступает в ЦЛТ.

Процесс обработки сигналов в тракте приема аппаратуры выполняется в обратной последовательности. Принятый ЦЛС, пройдя входное устройство, поступает в регенератор станционный (PC), где он восстанавливается по амплитуде, форме и длительности. В ПКпр биполярный ЦЛС преобразуется в однополярный ЦГС, который поступает в распределитель группового сигнала (РГС), или демультиплексор. В нем выделяются все служебные сигналы, которые подаются в соответствующие устройства приема:

- приемники сигналов синхронизации (ПР.СС);

- приемники СУВ и ДИ;

-плату контроля и сигнализации (ПКС) для приема сигналов об авариях.

Информационный поток с выхода РГС поступает в декодер, где из последовательности единиц и нулей кодовых групп формируется групповой сигнал АИМ Этот сигнал после усиления в групповом усилитете ГУС-3 поступает на временные селекторы (ВС) каналов. Каждый из них замыкается поочередно и выделяет только последовательность сигнала АИМ данного канала. Из этой последовательности импульсов с помощью ФНЧ-3,4 восстанавливается переданный с противоположной оконечной станции аналоговый (речевой) сигнал. Он усиливается в канальном усилителе (УС) до значения 4 дБ на выходе усилителя и через ДС канала поступает на двухпроводный выход канала ТЧ для передачи абоненту. Выделитель тактовой частоты ( ВТЧ ) обеспечивает формирование импульсов тактовой частоты для генераторного оборудования приемной части аппаратуры.



2. Метод наложения. На передаче состояние каждого двоичного канала испытывается непрерывной последовательностью стробирующих импульсов (рис. 3.2).

Рис. 3.2. Диаграммы, поясняющие метод наложения:

а) импульсная несущая; б) двоичный сигнал, подлежащий передаче; в) последовательность манипулированных импульсов на передаче; г) последовательность манипулированных импульсов, на приемном конце


В зависимости от полярности двоичного сигнала в СДК поступает или не поступает серия стробирующих импульсов. На приемной стороне по огибающей этой серии восстанавливается исходный телеграфный сигнал. На рис. 3.2а изображена импульсная несущая (стробирующие импульсы), вырабатываемая генераторным оборудованием передающей станции ИКМ. На диаграмме рис. 3.26 показан двоичный сигнал, подлежащий передаче. С помощью схемы И создается последовательность манипулированных импульсов (рис. 3.2в), которая вводится в групповой ИКМ сигнал. На приемной станции каждый импульс манипулированной последовательности растягивается на весь тактовый интервал (рис. 3.2г).

Большая избыточность при методе наложения позволяет обеспечить высокую достоверность передачи при минимальной стоимости. Метод наложения использован в аппаратуре ТВУ-12.


Метод «скользящего индекса».

Рис. 3.3. Диаграммы, поясняющие метод «скользящего индекса»:

а) последовательность .импульсов на передаче; б) последовательность тактовых импульсов канала; в) кодовая комбинация, характеризующая передаваемую информацию


Из импульсной несущей СДК для каждого двоичного канала выделяется последовательность тактовых импульсов (ТИК) (рис. 3.36), частота следования которых определяется скоростью передачи двоичных сигналов и необходимой точностью восстановления ЗМВ. На передаче определяется положение ЗММ (рис. 3.3а) между двумя соседними ТИК и результат измерения представляется в виде двоичного числа. Непосредственно за ближайшим к ЗММ тактовым импульсом в канал передается стартовый импульс, обозначающий наличие ЗММ, и кодовая комбинация о его положении и полярности (рис. 3.3в). Эта кодовая группа передается в канал теми же тактовыми импульсами, относительно которых определялось положение ЗММ. Следовательно, информация о подлежащем передаче двоичном сигнале передается сразу же после появления ЗММ.


3.

Определим частоту дискретизации (импульсную несущую) линейного сигнала и ширину спектра линейного сигнала для методов МН и СИП:

МН:

d = Dt/tmin ; tmin = 1/В = 1/100 = 0,01 с.

Dt =  =  = 250 мкс.

fд = 1/Dt = 1/250·10-6 = 4000 Гц.


СИП:

d = ; К = 2;

Dt =  =  = 1 мс.

fд = 1/Dt = 1/1·10-3 = 1000 Гц.


Импульсная несущая для количества каналов N=6:

МН: fнес = 6fд = 24000 Гц,

СИП: fнес = 6fд = 6000 Гц,


Ширина спектра соответственно при ЧМ ДБП:

МН: DF = 2fд = 8000 Гц, (в полосе канала ТЧ – 1 дискретный канал)

СИП: fнес = 2fд = 2000 Гц, (в полосе канала ТЧ можно организовать 2 дискретных канала).


Задача № 4.


ИСПОЛЬЗОВАНИЕ ПАКЕТНОЙ СЕТИ УКРПАК, СИСТЕМЫ ЭЛЕКТРОННОЙ ПОЧТЫ УКРМЕЙЛ

4.1. Сеть Укрпак

4.1.1. Общая характеристика сети

В Украине построена и работает сеть коммутации пакетов Укрпак.

Укрпак является национальной сетью общего пользования. Она имеет соответствующий статус и зарегистрирована в международном союзе электросвязи МСЭ-Т. Учредителем Укрпак является СП "Инфоком" -  уполномоченный представительный орган Украины в МСЭ-Т и официальный оператор Администрации связи Украины по предоставлению услуг передачи данных и электронной почты средствами сети передачи данных общего пользования.

Укрпак полностью соответствует международным стандартам, предъявляемым к пакетным сетям Х.25 и взаимодействует с аналогичными сетями более, чем 90 стран мира.

Сеть Укрпак имеет радиально-узловое построение (рис.1). Четыре главных региональных узла в гг. Киев, Днепропетровск, Львов и Одесса с функциями оконечных, связанные между собой каналами по принципу "каждый с каждым", обеспечивают передачу сообщений между оконечными узлами по одному из нескольких альтернативных маршрутов в зависимости от состояния и условий загрузки направлений. Все остальные областные центры подключены двумя направлениями к двум главным региональным узлам. Крупные города и некоторые районы подключены к областным узлам. Конфигурация сети Укрпак приведена на рисунке.

Доступ пользователей к сети Укрпак обеспечен по всей территории страны. Центры коммутации сети имеются в каждом областном центре и ряде крупных городов и районных центров. К концу 1997 году центры коммутации  установлены еще примерно в 109 крупных городах и районных центрах. Эта сеть находится в совместном владении СП "Инфоком" и областных предприятий связи.

К началу 1998 года сеть Укрпак насчитывала около 1400 абонентов во всех регионах Украины. В 1999 году  планируется ее дальнейший рост. В числе уже работающих абонентов - банковские и государственные структуры, в том числе МВД, Таможенный комитет, НБУ, ряд банков, Торгово-промышленная палата и др.

Через сеть Укрпак обеспечивается взаимодействие банков  Украины с международной межбанковской системой S.W.I.F.T., а также с сетями DATEX-P (Германия), Роспак (Россия), Белпак (Белорусь), Polpak (Польша), SprintNet (США).

В транзитных узлах и некоторых крупных областных центрах установлены центры коммутации пакетов типа S9000 производительностью 7000 пакетов в секунду, остальные ЦКП типа S8000 производительностью 5000 пакетов в секунду. По мере необходимости производительность ЦКП наращивается до требуемой.

Сеть Укрпак строится и развивается на базе технических и программных средств передовых зарубежных фирм: Hughes Network Systems (HNS  США), EDA (Канада), Microсom (США).

Для работы сети Укрпак в настоящее время используются выделенные линии кабелей ГТС (в пределах города) городских телефонных сетей, междугородные телефонные каналы (канал тональной частоты ТЧ) первичных сетей общего пользования, спутниковые каналы передачи данных, организуемые СП "Инфоком" в соответствии с полученной лицензией Министерства связи.


Качественные показатели сети Укрпак характеризуются следующими параметрами:

- защита информации от несанкционированного доступа сетевыми средствами;

- защита передаваемой информации от ошибок (вероятность необнаруженной ошибки менее 10Е -9);

- высокая надежность работы сети за счет системных, сетевых и технических решений;

- высокая скорость установления соединений от абонента до абонента (менее 1с) и передачи информации;

-  развитые средства ограничения несанкционированного доступа.

Если межстанционный канал выходит из строя, это не отражается на пользователе. Коммутаторы пакетов сети Укрпак с встроенной избыточностью автоматически обеспечивают соединения по альтернативным  маршрутам без потери данных или сеансов.


1.2. Предоставляемые услуги

При работе по сети Укрпак абоненты могут получить следующие услуги:

- непосредственное подключение к сети пользователей, имеющих синхронные и асинхронные терминалы, по закрепленным каналам с использованием соответственно стыков по рекомендациям МККТТ Х.25 и Х.28;

- подключение к сети пользователей, имеющих синхронные и асинхронные терминалы, по коммутируемой телефонной сети с использованием стыка по рекомендации МККТТ Х.32 и через устройства PAD с использованием стыка Х.28;

- работа с протоколами SNA, SDLS, BSC, асинхронным, преобразование протоколов из IBM 3270 BSC в IBM 3270 SNA и др. с помощью конверторов протоколов;

- предоставление абонентам коммутируемых виртуальных соединений;

- предоставление абонентам постоянных виртуальных каналов;

- установление местных, исходящих и входящих соединений абонентов в пределах Украины, а также международных соединений;

- возможность выбора скорости работы абонентского терминала в диапазоне от 1200 бит/с до 256 кбит/с;

- защита передаваемой по сети информации от несанкционированного доступа.

В сети Укрпак могут работать отдельные терминалы на базе стандартных персональных компьютеров (ПК), локальные  сети (ЛВС), ХОСТ-компьютеры и др.

Имеется также возможность получить множество других средств и дополнительных услуг при использовании сети Укрпак в качестве сети передачи данных Х.25.

Сеть Укрпак можно использовать совместно с системой обработки сообщений Укрмейл по стандарту МСЭ-Т Х.400, которая дает возможность абонентам:

- пользоваться услугами "электронной почты", в том числе доставкой информации через "электронный почтовый ящик";

- взаимодействовать с другими существующими службами "электронная почта" в том числе и международными;

- осуществлять двухсторонний обмен сообщениями с сетями АТ и телекс и режим факс-почты.


1.3. Способы подключения к сети абонентов

Возможные варианты подключения к сети абонентов показаны на рис.2 и рис.3.

Крупные учреждения включаются в сеть  по выделенным (закрепленным) каналам в центры коммутации пакетов своего регионального узла в протоколе Х.25. Это связано с тем, что они будут иметь большие объемы информационного обмена, им требуется двухсторонняя связь с большим кругом других абонентов сети, возможность одновременной работы многих пользователей ЛВС регионального управления по одному каналу связи с центром коммутации и другие услуги, обеспечиваемые пакетной сетью. Все региональные центры коммутации сети Укрпак могут обеспечить незамедлительное включение областных учреждений в сеть.

Более мелкие (районные) учреждения могут работать в трех режимах.

Относительно крупные учреждения,  имеющие  собственную  ЛВС, должны подключаться к сети по выделенным каналам в протоколе Х.25.

Учреждения со средним обменом могут подключаться к сети по выделенным каналам в протоколе Х.28 асинхронным доступом. В этом случае они могут иметь одновременную двухстороннюю исходящую и входящую связь, но в каждый момент времени может обеспечиваться работа только от одного пользователя.

Отдельные терминалы небольших подразделений могут подключаться к сети Укрпак по коммутируемому доступу через телефонную сеть в протоколе Х.28. В этом случае можно получить асинхронный доступ к пакетной сети с использованием концентраторов - устройств сборки-разборки пакетов (PAD). Эти устройства имеются в каждом  областном узле и будут установлены также в крупных городах и районных центрах. Такое подключение позволяет существенно сократить затраты на подключение к сети и абонементную оплату за ее услуги.

При асинхронном доступе все пакетные сети, в соответствии с действующими нормами Международного союза электросвязи, обеспечивают возможность только исходящей связи в режиме реального времени. При необходимости, входящие сообщения могут передаваться через систему электронной почты.

Высококачественная связь с системой электронной почты может быть обеспечена всем учреждениям с помощью сети Укрпак.


4.1.4. Приоритеты и классы обслуживания

Пользователям сети Укрпак предлагается до трех категорий приоритетов и до двенадцати классов обслуживания. В зависимости от категории приоритета  интеллектуальное коммутационное оборудование сети не только формирует очередь в передаче сообщений, но и выбирает наиболее целесообразный маршрут за весовыми коэффициентами, которые присваиваются сооставным участкам сети. Эти весовые коэффициенты присваиваются магистральным участкам сети исходя из условий качества приема/передачи информации и учитываются при определении маршрутов передачи для различных классов обслуживания.  


4.1.5. Защита передаваемой по сети информации от несанкционированного доступа.

В любой пакетной сети в каждом межстанционном канале одновременно передается информация от многих пользователей, поэтому выделить информацию конкретного пользователя крайне сложно. В сети Укрпак используется система динамического распределения нагрузки, которая постоянно меняет маршруты пересылки пакетов в зависимости от изменяющейся ситуации на сети. По этой причине пакеты, принадлежащие одному соединению, могут передаваться по разным маршрутам в зависимости от состояния сети.

Изменение маршрутов производится автоматически по командам системы управления сетью с использованием "суперсети", которая строится на виртуальных каналах, организуемых наряду с каналами передачи информации. Контролировать эту информацию в злонамеренных целях крайне сложно, поскольку виртуальные каналы создаются случайным образом без участия человека.

Практически отыскать в сети пакеты, принадлежащие одному соединению, можно только контролируя и расшифровывая информацию практически по всей сети, т.е. преднамеренно подключаясь ко всем центрам и межцентровым каналам сети. Даже если предположить, что это технически возможно, экономически нецелесообразно таким образом получать информацию в злонамеренных целях, поскольку для этого потребуются затраты и вычислительные ресурсы, превышающие затраты на сеть и время, зачастую намного превышающее возможности злонамеренного использования полученной информации.

Используемые в сети модемы Microcom с помощью станционного контроллера также обеспечивают эффективную защиту пользователей от несанкционированного доступа.

4.2. Система электронной почты (ЭП)

Система электронной почты является самостоятельной службой, которая базируется на пакетные сети, используя их как транспортные. Она позволяет значительно расширить услуги по обмену информацией между абонентами.

СП "Инфоком" создало национальную систему обработки сообщений общего пользования по стандарту МККТТ Х.400 версий 1988 и 1992г.г. ("электронную почту" - ЭП), сопряженную с сетью Укрпак.

Созданная СП "Инфоком" национальная служба электронной почты общего пользования получила в международном союзе электросвязи МСЭ-Т статус "Административного домена" (ADMD), что дает ей право представлять систему национальной ЭП Украины при взаимодействии с другими ADMD.

ЭП обеспечивает пересылку сообщений между следующими корреспондентами:

собственными абонентами электронной почты;

пользователями сетей абонентского телеграфа (АТ) и телекс;

владельцами факсимильных аппаратов;

абонентами сетей Х.25.

Если абоненту ЭП необходимо отправить сообщение пользователю сети   Х.25, АТ, телекс, либо владельцу факсимильного аппарата, он не должен приобретать дорогостоящее оборудование, предварительно получать разрешение на подключение к соответствующей сети. Эта работа уже выполнена службой ЭП. Направив сообщение в ЭП не требуется предпринимать никаких дополнительных действий. Если линия корреспондента занята, нет необходимости повторных наборов номера. Сообщение будет передано по оптимальному маршруту, и система сама следит за его прохождением и доставкой адресату.

ЭП позволяет передавать текстовые и табличные документы на любых языках, двоичные данные, оцифрованные графические и полутоновые изображения, оцифрованную звуковую информацию. Обеспечивается 100% гарантия доставки информации по назначению, так как стандарты Х.400 дают возможность контроля за прохождением сообщения по всему маршруту следования, что особенно важно при межсетевом обмене.

Сообщения могут быть одноадресные и многоадресные (одновременно пересылаются нескольким пользователям сети), частные (от абонента к абоненту, при этом к сообщению могут иметь доступ только отправитель и получатель), общего пользования (по запросу они предоставляются любому абоненту).

Система контролирует прохождение сообщения и может уведомить отправителя о доставке сообщения, а также о факте и времени ознакомления получателя с документом. Возможно сообщение о времени отправки письма.

Абонент может указать приоритетность отправления, чем будет определяться его место в очереди сообщений по всему маршруту.

По желанию абонента обеспечивается рассылка сообщений по "таймеру", т.е. с указанием срока получения или условия доставки сообщения до или после указанного срока.

Может быть также указано предельное время, после которого информация теряет смысл и ее доставка получателю нецелесообразна (например, сообщение о сроке начала совещания бессмысленно доставлять после начала этого совещания).

Возможна пересылка "электронных бандеролей" - текстовых или бинарных файлов, подсоединенных к основному сообщению.

На базе сетей электронной почты могут проводиться конференции и семинары, причем сеть позволяет проводить одновременно значительное количество таких мероприятий, так что сам абонент может выбирать, в какой конференции принять участие. В том числе возможно проводить конфиденциальные (закрытые) конференции, доступ на которые разрешен только определенным пользователям сети.

ЭП позволяет максимально автоматизировать и рационально организовать работу канцелярии и внедрить "безбумажную" технологию.

Служба дает возможность подготовить набор стандартных часто употребляемых писем (запросов, ответов, приветствий, данных о рассылке и др.), которые могут затем передаваться по указанию адресатам.

Современные системы электронного обмена данными (EDI), создаваемые в рамках ЭП, предназначены для подготовки и пересылки данных, заполняющих формы - таблицы, бланки, счета и др. При этом нет необходимости каждый раз передавать полный текст формы , т.к. он заранее известен и согласован, что позволяет во много раз сократить объем передаваемой по сети информации. В системе предусмотрен  программный контроль правильности заполнения форм, что позволяет исключить неверные действия пользователя. Для получателя информация может быть выведена на экран или печать в виде стандартной формы или в виде, наиболее пригодном для дальнейшей автоматической обработки.

По желанию пользователя могут использоваться имеющиеся в системе наборы форм или создаваться новые.

Системы EDI предусматривают обслуживание систем электронных платежей, обработки финансовых документов.


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.