Министерство образования Российской Федерации
Факультет вечернего и заочного обучения
Кафедра Прикладной механики
по дисциплине «Прикладная механика» .
Тема Разработка привода к ленточному транспортёру .
Расчетно-пояснительная записка
Выполнил студент ЭСХ-011 Калиганов С.А. .
Группа Подпись инициалы, фамилия
Дата
Руководитель Свиридов С.И.
Подпись инициалы, фамилия
Члены комиссии
Нормоконтролёр
2004
Содержание
1. Задание на курсовое проектирование…………………………..1
2. Содержание……………………………………………………....2
3. Замечания руководителя……………………………….………..3
4. Введение………………………………………………………….4
5. Исходные данные……………………………….…………….…5
6. Выбор электродвигателя………………………………………...6
7. Определяем значения мощностей, угловых скоростей и крутящих моментов……………………………………………...7
8. Расчёт зубчатой передачи…………………………………….…8
9. Расчёт геометрических параметров зубчатых колёс…….…….9
10.Основные размеры шестерни и колеса…………………….....10
11.Проверочный расчёт на контактную выносливость………....11
12.Расчёт на контактную выносливость при действии максимальной нагрузки………………………….……….…..12
13.Силы, действующие в зацеплении……………………...…….12
14. Расчёт на выносливость при изгибе…………………...……..13
15. Предварительный расчёт валов…………………………..…..15
16. Конструктивные размеры зубчатых колёс………………..….15
17. Конструктивные размеры корпуса редуктора…………..…...16
18. Выбор муфты………………………………………………..…17
19. Выбор смазки…………………………………………….….…17
20. Проверочный расчёт одноступенчатого редуктора………....18
21. Проверка прочности шпоночных соединений………….…...24
22. Уточнённый расчёт валов…………………………………….25
23. Расчётная схема ведущего вала……………………………....29
24. Расчётная схема ведомого вала……………………………....30
25. Литература……………………………………………………..31
26. Приложение……………………………………………………32
Введение
Ввиду отсутствия в промышленности мощных электродвигателей с малой скоростью вращения появилась необходимость в создании двигателей, которые будут понижать скорость вращения. Таким устройством является проектируемый редуктор.
Цель данного проекта состоит в проектировании одноступенчатого цилиндрического редуктора с косозубыми колёсами.
В процессе проектирования необходимо выбрать соответствующие детали, при этом учитывая их долговечность, габариты.
За время курсового проектирования студент приобретает навыки в использовании технической литературы, справочников, ГОСТов и других справочных и учебных материалов. Расчет привода
Исходные данные:
N2 = 95 кВт - мощность на ведомом валу
n2 = 650 об/мин - число оборотов на ведомом валу
Up = 4,5 - передаточное отношение редуктора
T = 13000 часов - срок службы привода
Привод состоит из электродвигателя 1, муфты 2, одноступенчатого редуктора с цилиндрическими колесами 3, ленточный транспортёр – 4.
М
График нагрузки:
0,1 Мн
0,3 Мн
1,2 Мн Мн
0,6 Мн
0,003Т 0,5Т 0,4Т
Т
1. Выбор электродвигателя
Вычислим общий КПД редуктора:
Из табл. 1.1 [1]выбираем:
- зубчатая передача в закрытом корпусе с цилиндрическими колёсами
- потери на трение в опорах каждого вала
- коэффициент
n=2 - число валов
Необходимая мощность электродвигателя:
Частота вращения вала электродвигателя:
Из каталога (П.1. [1]) выбираем асинхронный электродвигатель серии 4А, закрытый обдуваемый по ГОСТ 19523-81 - 4А280S2, с номинальной мощностью N=110 кВт и частотой вращения nc = 3000 об/мин.
Скольжение s = 2%
Перегрузка по мощности:
Перегрузки по мощности нет.
Определим значения мощностей, угловых скоростей и крутящих моментов на валах:
N1 = 99,93 кВт ; n1 = 2925 об/мин
Угловая скорость:
Крутящий момент:
N2 = N1 x η1=99,93 x 0,97=96,93 кВт
n2 = n1 / Up= 2925 / 4,5= 650 об/мин
Выбор материалов шестерни – колеса.
Для обеспечения передачи выбираем из табл. 3.3 [1] материалы:
для шестерни – Сталь 40Х, σВ=780 Мпа; σТ=440 Мпа; HB1 230; термообработка – улучшение
для колеса - Сталь 40Х, σВ=690 Мпа; σТ=340 Мпа; HB2 200; термообработка – нормализация.
Вычисляем пределы выносливости:
NHO – базовое число циклов нагружения колеса для расчёта по контактным напряжениям при твёрдости ≤ HB 230
NHO=1,0 х 107
Эквивалентное число циклов нагружения NУ определим в соответствии с графиком нагрузки:
Из графика нагрузки следует:
Mmax= 1,2 Mн ; МII= 0,6 Мн ; МIII= 0,3 Мн ;
tmax= 0,003 T ; tII= 0,1 T ; tIII= 0,4 T ;
nmax=n1 ; MI=MН ; tI=0.5T ; nI=nII=nIII=n1
Так как Ny > 107, то kpk=1
Момент на валу шестерни:
Коэффициент нагрузки для симметричного расположения шестерни предварительно примем k=1,3.
Из условия контактной прочности для косозубых колёс Ψа=0,315; kП=1,4; межосевое расстояние вычислим по формуле:
По ГОСТ 2185-66 это значение aω округляется до ближайшего стандартного aω= 400 мм.
Расчёт геометрических параметров зубчатых колёс.
Нормальный модуль mn выбирается из ряда стандартных модулей по ГОСТ 9563-60 из интервала mn=(0,010-0,020)aω
mn=(0,010-0,020) х 400=4-8мм
Принимаем по ГОСТ 9563-60 mn=6мм.
Если предварительно принять, что угол наклона зуба β=100, то суммарное число зубьев шестерни и колеса вычислим по формуле:
;
Передаточное отношение отличается от стандартного (U=4,5) на 0,89% ,что меньше допустимого 2,5%.
β = arccos 0,98= 10 073I
Основные размеры шестерни и колеса.
Вычислим диаметры делительных окружностей:
- шестерни:
- колеса:
Проверяем межосевое расстояние:
Диаметры окружностей впадин зубьев:
Ширина венца зубьев колеса:
Ширина венца зубьев шестерни:
3. Проверочный расчет на контактную выносливость
Определим коэффициент ширины шестерни по диаметру:
Для уточнения коэффициента нагрузки определяется окружная скорость колес в зацеплении и степень точности передачи:
Примем 7-ую степень точности.
где: К Нb = 1,041 - из таблицы 3.5 [1]
К Нa = 1,12 - из таблицы 3.4 [1]
К HV = 1,05 - из таблицы 3.6 [1]
Проверка контактных напряжений по формуле:
591,25
393,26 МПа <[s H ] = 591,25 Мпа
5. Расчет на контактную выносливость при действии максимальной нагрузки
Используя график нагрузки находим
Допускаемое напряжение для нормализованной стали 45
sHРmax = 2,8 sТ = 2,8• 510 = 1428 МПа
Условие прочности sHmax < sHРmax соблюдается
6.Силы, действующие в зацеплении
окружная
радиальная
осевая
7. Расчет на выносливость при изгибе
По таблице 3 методики уточним механические характеристики материалов зубчатых колес с учетом установленных размеров и вычислим пределы выносливости:
где: коэффициент твёрдости (стр. 42). По табл. 3,7 при ψbd=1,275, твёрдости HB≤350 и несимметричном расположении зубчатых колёс относительно опор kFβ=1,33.
по табл. 3.8 kFυ=1,2.
Т.о. коэффициент kF=1,33х1,2=1,596
YF – коэффициент, учитывающий форму зуба, и зависящий от эквивалентного числа зубьев zυ
у шестерни
у колеса
По таблице на стр.42 выбираем:
YF1=4,09 и YF2=3,61
Допускаемое напряжение по формуле:
По табл. 3.9 для Стали 35 при твёрдости HB≤350 σoFlimb=1,8 HB
Для шестерни σoFlimb=1,8 х 510=918 HB
Для колеса σoFlimb=1,8 х 450=810 HB
[SF]=[SF]I x [SF]II - коэффициент безопасности,
где: [SF]I =1,75 (по табл. 3.9), [SF]II =1 (для поковок и штамповок)
[SF]=[SF]I x [SF]II=1,75х1=1,75.
Допускаемые напряжения:
для шестерни:
для колеса:
Находим отношения:
Дальнейший расчёт следует вести для зубьев колеса, для которого найденное отношение меньше.
Определим коэффициенты Yβ и KFα (см гл. III, пояснения к формуле (3.25)).
для средних значений коэффициента торцевого перекрытия εα=1,5 и 7-й степени точности KFα=0,92
Проверяем прочность зуба колеса по формуле:
Условие прочности выполнено.
8.Предварительный расчет валов
Предварительный расчет проводим на кручение по пониженным допускаемым напряжениям.
Диаметр выходного конца при допускаемом напряжении [t к] = 20 Мпа
Принимаем d в1 = 50 мм
Примем под подшипниками d п1 = 45 мм
Шестерню выполним за одно целое с валом.
Примем [ t к ] = 20 МПа
Диаметр выходного конца вала
Примем d в2 = 65 мм
Диаметр вала под подшипниками примем d п2 = 70 мм
Под зубчатым колесом примем d к2 = 75 мм
Диаметры остальных участков валов назначают исходя из конструктивных соображений при компоновке редуктора.
9.Конструктивные размеры зубчатых колес
Её размеры определены выше:
d1 = 146,565 мм; da1 = 158,565 мм; b1 = 131 мм
Колесо вала 2
d2 = 653,435 мм; da2 = 665,435 мм; b2 = 126 мм
Диаметр ступицы
dст = 1,6 х dk2 = 1,6 х 75 = 120 мм
Принимаем dст = 120 мм
Длина ступицы
Lст = 1,4 х dk2 = 1,4 х 75 = 105 мм
Принимаем L ст = 150 мм
Толщина обода
d = (2,5¸4) х m n= (2,5¸4) х 6 = 15¸24 мм
Принимаем d = 20 мм
Толщина диска
С = 0,3 х b 2 = 0,3 х 126 = 37,8 мм
Принимаем С = 40 мм
10.Конструктивные размеры корпуса редуктора
Толщина стенок корпуса и крышки
d = 0,025 х aw +1 = 0,025 х 400 + 1 = 11 мм Примем d = 12 мм
d 1 = 0,02 х aw +1 = 0,02 х 400 + 1 = 9 мм Примем d 1 = 10 мм
Толщина фланцев поясов корпуса и крышки
-верхнего пояса корпуса и пояса крышки
b = 1 ,5 х d = 1,5 х 12 = 18 мм
b 1= 1 ,5 х d1= 1,5 х 12 = 15 мм
-нижнего пояса корпуса
р = 2,35 х d = 2 ,53 х 10 = 25,3 мм Принимаем р = 25 мм
Диаметр болтов :
-фундаментных
d 1 = 0,033 х aw +12 = 0,033 х 400 + 12 = 25,2 мм
Принимаем болты с резьбой М 27
-крепящих крышку к корпусу у подшипника
d 2 = 0,72 х d 1 = 0 ,72 х 27 = 19,4 мм
Принимаем болты с резьбой М20
-соединяющих крышку с корпусом
d 3 = 0,55 х d 1 = 0,55 х 27 = 14,8 мм
Принимаем болты с резьбой М 16
11.Выбор муфты
Ведомый вал
Передаваемый крутящий момент
Т2 = 1027,93 Н м
Число оборотов n = 650 об/мин
Применим муфту упругую втулочно-пальцевую по ГОСТ 21424-75
Размеры
d = 65 мм Т = 1000 Н м Тип I
D = 220 мм L = 286 мм
12.Выбор смазки
Смазывание зубчатого зацепления производим окунанием зубчатого колеса в масло ,заливаемое внутрь корпуса до уровня ,обеспечивающего погружение колеса на 10 мм .
Передаваемая мощность Р = 99,93 кВт
Объем масляной ванны W определим из расчета 0,25дм3 масла на 1 кВт передаваемой мощности
W = 0,25 х 99,93 = 24,98 л
Устанавливаем вязкость масла
При s н =9,729 МПа и V = 22,435 м/с
кинематическая вязкость масла u = 34 х 10 -6 м2 /с
Применим масло индустриальное И- 30А по ГОСТ 20799-75
Камеры подшипников заполняем пластичным смазочным материалом УТ – 1.
13. Проверочный расчет валов одноступенчатого редуктора
Расчёт ведущего вала
Из предыдущих расчётов имеем:
T 1 = 326,41 Н м – крутящий момент
n1 = 2925 об/мин - число оборотов
F t = 4454,13 Н – окружное усилие
F r = 1650,05 Н – радиальное усилие
F a = 308,56 Н – осевое усилие
d 1 = 146,565 мм – делительный диаметр шестерни
Материал вала: сталь 45, улучшенная, HB 200
s в = 690 МПа – предел прочности
s -1 = 0,43 х s в = 0,43 х 690 = 300 МПа - предел выносливости при
симметричном цикле изгиба
t -1 = 0,58 х s -1 = 0,58 х 300 = 175 МПа - предел выносливости при
симметричном цикле касательных напряжений
l1 = 110 мм
Определим опорные реакции в плоскости XZ
Определим опорные реакции в плоскости YZ
Проверка:
Суммарные реакции:
Определим изгибающие моменты
Плоскость YZ
Плоскость ZX
Суммарный изгибающий момент
Подбираем подшипники по более нагруженной опоре 1.
Намечаем радиальные шариковые подшипники 309 (по П.3. [1]):
d = 45 мм ; D = 100 мм ; B = 25 мм ; r = 2,5 мм ; C = 52,7 кН ; Co = 30 кН
Страницы: 1, 2