Далее рассмотрим равновесие между газом (который будем считать идеальным) и его раствором в некотором конденсированном растворителе. Условие равновесия, т.е. равенство химических потенциалов газа чистого и растворенного напишется (с помощью (12) из 2.1.5) в виде
,
(2)
откуда
.
(4)
Функция характеризует свойство жидкого (или твердого) раствора; однако при небольших давлениях свойства жидкости очень слабо зависят от давления. Поэтому и зависимость от давления не играет роли, и можно считать, что коэффициент при в (4) есть постоянная, не зависящая от давления:
Таким образом, при растворении газа концентрация раствора (слабого) пропорциональна давлению(подразумевается, что молекулы газа переходят в раствор в неизменном виде. Если при растворении молекулы распадаются (например, при растворении водорода Н2 в некоторых металлах), то зависимость концентрации от давления получается иной).
Для учета изменения термодинамических функций при изменении количества вещества в системе, необходимо к дифференциалу каждого термодинамического потенциала добавить член , где – число частиц вещества в системе, а – коэффициент пропорциональности.
В этом случае термодинамические функции будут описывать также и те системы, в которых совершаются процессы с изменением количества вещества.
Например,
(1)
отсюда
где – тепловая функция, или энтальпия ().
Так все термодинамические потенциалы имеют размерность энергии, то согласно формуле (2) коэффициент пропорциональности может быть определен как энергия, отнесенная к одному молю. Этот коэффициент получил название химического потенциала.
Выражение (1) справедливо для системы, состоящей из однородных молекул. Если же система состоит из разнородных веществ, последний член в формуле (1) надо представить в виде суммы
(3)
характеризует изменение энергии при изменении количества данного компонента вещества в системе на один моль.
Понятно, что химический потенциал можно определить, исходя не только из выражения тепловой функции (2), но и из выражения любой другой термодинамической функции. При этом по определению
(5)
Таким образом, химический потенциал характеризует изменение энергии при изменении количества вещества в системе на один моль.
3. Разработка теории радиогеохимического эффекта
В данной главе сформулированы общие предположения теории радиогеохимического эффекта, приведена его математическая модель. Здесь решается задачи для нахождения результирующей плотности радиоактивных веществ в пористой среде, которые иллюстрируются на графиках. Определяются величина этого эффекта и условие его возникновения.
В данной работе предпринята попытка исследования особенностей формирования радиогеохимического эффекта на основе концепции, согласно которой диффузия радиоактивных веществ определяется химическим потенциалом и изучения новых возможностей практического использования этого эффекта.
В основу теории положено следующие общенаучные предположения:
– диффузия растворенного вещества пропорциональна градиенту химического потенциала
(3.1)
где – коэффициент диффузии химического потенциала,
– вектор плотности потока диффундирующих радиоактивных компонентов,
в частности поток радиоактивных примесей между скелетом и насыщающим флюидом определяется ньютоновским законом для химического потенциала
(3.2)
– плотность растворенных изотопов предполагается малой в сравнении с плотностью несущей фазы, которая не изменяется в процессе фильтрации. Перенос растворенных изотопов определяется скоростью фильтрации несущей фазы. Динамика растворенного вещества определяется уравнением неразрывности, следующим из закона сохранения массы
(3.3)
соответственно для плотности радиоактивных веществ в скелете ρs имеет место следующее уравнение
(3.4)
Диффузией радиоактивных примесей, кроме массообмена жидкости со скелетом, в уравнениях (3) и (4) пренебрегается;
–для несущей жидкости, предполагаемой несжимаемой, соответствующее уравнение неразрывности предполагается квазистационарным
(3.5)
– период полураспада предполагается настолько большим, что за все время процесса вытеснения не происходит заметного изменения плотности радиоактивных примесей за счет радиоактивного распада. Это позволяет пренебречь соответствующими источниками в уравнениях неразрывности и упростить задачу.
Для простоты также предполагается поршневой режим вытеснения водой нефти. Основные закономерности радиогеохимического эффекта без ограничения общности осуществлены на основе плоского одномерного течения, которое хорошо применимо в пластах на больших расстояниях от нагнетательной скважины, т. е. в зоне расположения добывающих скважин, где обычно указанный эффект и регистрируется. Естественным предполагается и пренебрежение диффузионным массообменом пласта с покрывающими и подстилающими породами.
Заметим, что в предполагаемом подходе к скелету отнесена реликтовая вода и другие составляющие, не подвижные в процессе вытеснения, поэтому плотность радиоактивного вещества в скелете включает и содержание радиоактивных веществ в указанных компонентах, что впрочем, улучшает условия применимости разработанной теории.
Математическая постановка задачи в указанных выше предположениях в одномерном случае включает уравнение для радиоактивных примесей в несущей жидкости
(3.6)
и в скелете пористой среды
(3.7)
где – пористость,
(3.8)
(3.9)
Складывая (3.6) в (3.7), получим идентичные уравнения для плотности радиоактивного вещества в жидкости
(3.10)
и скелете пористой среды
(3.11)
где скорость конвективного переноса примесей определяется выражением
(3.12)
Так как химический потенциал является функцией от концентрации, то разложим его в ряд Тейлора вблизи точки равновесия растворенного вещества
(3.13)
Предполагается, что в равновесии химические потенциалы радиоактивных веществ равны . Пренебрегая в (3.13) слагаемыми порядка выше первого, получаем
(3.14)
где .
Для простоты считаем, что процесс фильтрации равновесный, так что концентрации радиоактивных веществ в жидкости и скелете пористой среды определяются из условия равенства химических потенциалов
(3.15)
Такое же условие и для нефти в скелете .
3.1.1. Постановка задачи
Исследование динамики примесей при поршневом вытеснении нефти водой из пористой среды приводит к краевым задачам математической физики. В общем случае разработка данной теории требует совместного рассмотрения уравнений (3.10) и (3.11) с краевыми условиями. Однако плотности в скелете и насыщающей жидкости связаны равенством . Это соотношение позволяет отыскивать решение только одного из уравнений, поскольку второе решение находится умножением или делением на . Можно показать, что найденное таким образом второе решение будет удовлетворять соответствующему дифференциальному уравнению в частных производных.
Краевые условия задачи определяются из очевидных соображений.
Требуется найти решение уравнения для жидкости
(3.16)
в виде функции , удовлетворяющие граничным условиям, в подобласти . Предполагается, что на левом конце стержня поддерживается постоянная концентрация радиоактивного вещества , поэтому для подобласти граничное условие имеет вид
(3.18)
Требуется найти решение уравнения для скелета
(3.17)
в виде функции , удовлетворяющие граничным условиям, в подобласти .
В подобласти на правой подвижной границе поддерживается неизменной плотность радиоактивного вещества в скелете, поэтому граничное условие для уравнения скелета имеет вид
(3.19)
Это условие определяет перенос радиоактивных веществ из нефтенасыщеной зоны пористой среды в водонасыщенную.
3.1.2 Решение задач
Найдем решение уравнения (3.16) в более общем виде. То есть для уравнения
с граничным условием
(3.20)
для области
Решение уравнений (3.16) находится методом характеристик.
(3.21)
Интегрируя первое уравнение системы (16), получаем
(3.22)
Из второго уравнения следует, что , где – некоторая постоянная. Но т.к., то .
Найдем границы области в котором есть решение.
Пусть при , тогда
Для начального момента, при и
(3.23)
Уравнение (3.23) представляет собой границу.
Параметризуем уравнение (3.22).
Зададим так, чтобы получить значение при , т. е. .
При ,
(3.24)
(3.25)
Подставляя значение параметра в (15) получим
(3.26)
Так как , то
(3.27)
Таким образом это выражение (3.27) есть решение уравнения (3.16) в более общем виде.
Для частного случая, т. е. не зависит от , решение
(3.28)
Полученное решение (8) для плотности радиоактивного вещества в вытесняющей жидкости, удовлетворяет граничному условию для жидкости в подобласти .
Решение для плотности радиоактивного вещества в скелете в той же области получим из условия равенства химических потенциалов
(3.29)
Таким же образом, в более общем виде решим уравнение для скелета
(3.30)
(3.31)
для области .
(3.32)
Интегрируя первое уравнение (3.32), получаем
(3.33)
Параметризуем уравнение (3.33): при , . Тогда
;
Так как
(3.34)
Подставим значение параметра (3.34) в граничное условие для скелета пористой среды
То теперь
(3.35)
Выражение (3.35) есть решение уравнения для скелета (3.30) в общем виде. Частное решение получаем из (3.35) исключая .
(3.36)
Полученное решение (3.36) для плотности радиоактивного вещества в скелете, удовлетворяет граничному условию подобласти .
Используя соотношение (3.15) находим решение для плотности радиоактивного вещества в вытесняющей жидкости подобласти получим из условия равенства химических потенциалов
(3.37)
Проверка значений на границах подобласти
При , на правой границе
(3.38)
при и на левой границе
(3.39)
Окончательное выражение для плотности радиоактивного вещества в вытесняющей жидкости имеет вид:
(3.40)
и для плотности радиоактивного вещества в скелете в той же области получим
(3.41)
Для области , занимаемой вытесняемой нефтью плотности радиоактивного вещества в скелете и нефти остаются неизменными:
(3.42)
Результирующая плотность радиоактивных веществ в пористой среде ρ+ складывается из плотности в насыщающей жидкости, скелете и нефти, поэтому окончательное выражение имеет вид
(3.43)
На рисунке приведена зависимость относительной плотности радиоактивного вещества от координаты в фиксированный момент времени. В расчетах принято: =0.2, μ΄/μs΄=0.05, μo΄/μw΄=10, ρs0/ρw0=5. Сплошной линией изображен график зависимости относительной результирующей плотности радиоактивных веществ, а пунктирной ‑ их плотность в скелете.
Из рисунка видно, что в области образуется зона II с повышенным содержанием радиоактивных веществ. Отметим, что на границах зон наблюдается скачкообразное изменение плотности радиоактивного вещества. В реальных условиях эти скачки нивелируются диффузией, которая в рассматриваемом случае для простоты не учитывается.
Рис.5. Зависимость относительной плотности радиоактивного вещества в пористой среде от пространственной координаты в фиксированный момент времени: I – промытая зона, II – зона радиогеохимического эффекта; III – нефтенасыщенная зона; 1 – результирующие значения плотности в пористой среде, 2 – составляющая плотности в скелете
Из анализа кривых, приведенных на рисунке, следует, что возникновение зоны с повышенной радиоактивностью объясняется вымыванием радиоактивных веществ, первоначально сосредоточенных в скелете, водой.
Из изложенного выше следует, что область радиогеохимического эффекта представляет зону обратного массового влияния вытесняемой жидкости на вытесняющую. Это происходит за счет взаимодействия жидкостей через скелет. Дело состоит в том, что скорость движения границы вытеснения превышает скорость конвективного переноса примесей в пористой среде , с которой только и возможно движение разрывов. В результате размеры области радиогеохимического эффекта увеличиваются со временем со скоростью , которая, как показывают оценки, в несколько раз превышает скорость . Процессы, аналогичные описываемым, происходят при формировании черенковского излучения.
В реальных условиях возможность измерения распределения радиоактивности в пласте ограничена только определенным числом скважин, в области расположения которых происходит обводнение пласта. В этих скважинах возможно измерение зависимости радиоактивности от времени. Отметим, что наблюдаемая при этом временна̀я развертка радиоактивности соответствует пространственной, изображенной на рисунке.
Условие возникновения радиогеохимического эффекта заключается в повышении радиоактивного фона, математическим выражением которого является неравенство , откуда с использованием (20) получим
(3.44)
После соответствующих преобразований получим
(3.45)
Неравенство (3.45) определяет соотношение производных химического потенциала, при котором наблюдается радиогеохимический эффект. В условие (3.45) не входит пористость, это означает, что радиогеохимический эффект должен наблюдаться в пластах с любой пористостью. Отметим, однако, что величина эффекта согласно предлагаемой теории пропорциональна пористости
(3.46)
где – коэффициент, зависящий от выбора единиц измерения.
Заключение
Таким образом, предложенная теория в достаточной мере отражает механизм перекачки радиоактивных веществ и образование зоны радиогеохимического эффекта. Полученные результаты могут быть использованы при интерпретации результатов геолого-промысловых исследований для определения принимающих и отдающих интервалов пластов. Они позволяют также более глубоко понять процессы, происходящие с растворенными веществами при движении пресных питьевых вод в подземных пластах.
Литература
1. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. – М.: Наука. – 1986. – 773 с.
2. Орлинский Б.М. Котроль за разработкой нефтяных месторождений. – М.:Недра, 1982.
3. Хуснуллин М.Х. Геофизические методы контроля разработки нефтяных пластов. –М: Недра, 1989.
4. Валиуллин Р.А., Шарафутдинов Р.Ф., Азизов Ф.Ф., Никифоров А.А., Зелеев М.Х. Исследование закономерностей формирования радиогеохимического эффекта в пласте//Изв. ВУЗов. Нефть и газ. №3, 2000. С 26-31.
5. Советский энциклопедический словарь. – М.: «Советская энциклопедия», 1985. Под ред. Прохорова А.М.
Страницы: 1, 2, 3