Рефераты. Решение задач симплекс-методом






Преобразуем неравенства в эквивалентные равенства с помощью дополни­тельных неизвестных. Симплексные уравнения будут следующими:

-50 = -1х1 - 1х2 - 0х3 + 1х4 + 0х5 + 0х6 + 0х7

-140 = -4х1 - 1х2 - 3х3 + 0х4 + 1х5 + 0х6 + 0х7

-127 = -1х1 - 4х2 - 1х3 + 0х4 + 0х5 + 1х6 + 0х7

-80 = 0х1 - 3х2 - 2х3 + 0х4 + 0х5 + 0х6 + 1х7

F = 8х1 + 12х2 + 10х3 + 0х4 + 0х5 + 0х6 + 0х7 = min

Записанные уравнения отличаются от тех, которые нами рассматривались выше, тем, что коэффициенты при основных неизвестных и свободные члены имеют отрицательные знаки.

Решение таких задач производится двойственным симплексным методом. Система симплексных уравнений записывается в таблице.


cj

p0

x0

8

12

10

0

0

0

0

x1

х2

х3

х4

х5

х6

х7

0

х4

-50

-1

-1

0

1

0

0

0

0

х5

-140

-4

-1

-3

0

1

0

0

0

х6

-127

-1

-4

-1

0

0

1

0

0

х7

-80

0

-3

-2

0

0

0

1

Zj - Cj

0

-8

-12

-10

0

0

0

0


Элементы целевой строки рассчитывают по обычным правилам и получа­ют отрицательные знаки.

В отличие от вычислительной процедуры основного симплексного метода решение задач двойственным методом выполняется в обратном порядке.

В итоговом столбце свободные числа имеют отрицательные знаки. Это яв­ляется свидетельством того, что данный план нельзя считать допустимым, так как он противоречит экономическому смыслу. План можно считать допустимым только тогда, когда в итоговом столбце не будет отрицательных чисел.

Ликвидация отрицательных чисел в итоговом столбце начинается с наи­большего по абсолютной величине. В нашем примере таким числом является (-140). Строка х5, в которой находится это число, принимается за ключевую и со­ответственно выделяется.

Определив ключевую строку, находим ключевой столбец. Для этого нужно элементы целевой строки разделить на элементы ключевой строки и из получен­ных отношений выбрать наименьшее. Столбец, имеющий наименьшее отноше­ние, принимается за ключевой и так же как ключевая строка, выделяется.

Столбцы х1, х2, х3 будут иметь следующие отно­шения:

Наименьшее отношение имеет столбец х1, он и будет являться ключевым.

Определив ключевую строку, ключевой столбец и ключевое число, по обычным правилам преобразуются все элементы матрицы и записываются в но­вой таблице.

1-я итерация

cj

p0

x0

18

15

24

0

0

0

0

x1

х2

х3

х4

х5

х6

х7

0

х4

-15

0

-0.75

0.75

1

-0.25

0

0

8

х1

35

1

0.25

0.75

0

-0.25

0

0

0

х6

-92

0

-3.75

-0.25

0

-0.25

1

0

0

х7

-80

0

-3

-2

0

0

0

1

Zj - Cj

280

0

-10

-4

0

-2

0

0

 

После преобразования элементов в итоговом столбце осталось еще три от­рицательных числа в строке х4, х6 и х7. Наибольшим по абсолютной величине яв­ляется число в строке х6. Эта строка будет принята за ключевую для последую­щего расчета. Ключевой столбец определяется по наименьшему отношению эле­ментов целевой строки к элементам ключевой строки. Им будет столбец х2. Вво­дим этот вид сырья в программу вместо неизвестного х6. По общим правилам преобразуем элементы матрицы.

2-я итерация

cj

p0

x0

x1

х2

х3

х4

х5

х6

х7

0

х4

3.4

0

0

0.8

1

-0.2

-0.2

0

8

х1

28.9

1.0

0.0

0.7

0.0

-0.3

0.1

0.0

15

х2

24.5

0.0

1.0

0.1

0.0

0.1

-0.3

0.0

0

х7

-6.4

0.0

0.0

-1.8

0.0

0.2

-0.8

1.0

Zj - Cj

525.3

0.0

0.0

-3.3

0.0

-1.3

-2.7

0.0


После преобразования элементов в итоговом столбце осталось еще одно отрицательное число в строке х7. Эта строка будет принята за ключевую для по­следующего расчета. Ключевой столбец определяется по наименьшему отноше­нию элементов целевой строки к элементам ключевой строки. Им будет столбец х3. Вводим этот вид сырья в программу вместо неизвестного х7. По общим пра­вилам преобразуем элементы матрицы.

В таблице записаны преобразованные числа, полученные на 3-й итерации. В итоговом столбце все отрицательные числа исчезли, значит полученный план является допустимым и одновременно оптимальным. Вывод о том, что план по­лучен оптимальный, позволяют сделать элементы целевой строки. Все они отри­цательны или равны нулю, что свидетельствует об оптимальности результата при решении задач на минимум целевой функции.

3-я итерация

cj

p0

x0

x1

х2

х3

х4

х5

х6

х7

0

х4

0.6

0.0

0.0

0.0

1.0

-0.1

-0.6

0.4

8

х1

26.3

1.0

0.0

0.0

0.0

-0.2

-0.3

0.4

15

х2

24.3

0.0

1.0

0.0

0.0

0.1

-0.3

0.0

10

х3

3.6

0.0

0.0

1.0

0.0

-0.1

0.4

-0.6

Zj - Cj

537.2

0.0

0.0

0.0

0.0

-1.7

-1.2

-1.9

Подставив значения неизвестных в исходные неравенства, получаем:

1 * 26,3 + 1 * 24,3 + 0 * 3,6 ≥ 50

4 * 26,3 + 1 * 24,3 + 3 * 3,6 ≥ 140

1 * 26,3 + 4 * 24,3 + 1 * 3,6 ≥ 127

0 * 26,3 + 3 * 24,3 + 2 * 3,6 ≥ 80

Стоимость сырья при этом будет минимальной и составит:

F = 8 * 26,3 + 12 * 24,3 + 12 * 3,6 = 537,2


ЗАДАЧА 3


Составить оптимальный план перевозок пищевых продуктов от 4-х по­ставщиков к 6-ти потребителям. Поставщики (П),  потребители (М), объемы вы­воза и завоза, кратчайшие расстояния между пунктами вывоза и завоз приведены в таблице.

Поставщики

Потребители

Объемы вывоза, т

М1

М2

М3

М4

М5

М6

П1

24

30

42

15

39

21

144

П2

9

24

30

33

27

29

148

П3

24

22

20

45

21

23

76

П4

11

36

27

40

30

8

132

Объемы завоза, т

92

84

80

112

96

36

 

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.