Рефераты. Синтез замещенных пирролов






Синтез замещенных пирролов

Федеральное агентство по образованию

Московская государственная академия

тонкой химической технологии

им. М. В. Ломоносова



Факультет: Биотехнологии и органического синтеза

Специальность: 250700 «Технология кинофотоматериалов и магнитных носителей»

Кафедра: Химии и технологии биологически активных

соединений им. Н. А. Преображенского



Квалификационная работа специалиста

Тема.













Москва 2006 г.

Содержание


Введение…………………………………………………………………...3-4 стр.

Литературный обзор

1. Классические методы синтеза замещенных пирролов….…………...5-6 стр.

2. Новые методы синтеза замещенных пирролов…….………...……..7-17 стр.

3. Реакции замещенных пирролов…………………………………….17-26 стр.

Обсуждение результатов………………………………………………..27-41стр.

Экспериментальная часть……………………………………………...42-48 стр.

Охрана труда……………………………………………………………49-64 стр.

Промышленная экология………………………………………………65-68 стр.

Экономическая часть…………………………………………………...69-76 стр.

Патентные исследования………………………………………………77-79 стр.

Выводы……………………………………………………………………..80 стр.

Список литературы……………………………………………………..81-83 стр.

Пятичленные гетероциклические структуры, такие как пиррол, а также сопряженные молекулы, содержащие пиррольные фрагменты потенциально важны в качестве оптических электроактивных материалов. Два класса таких материалов активно изучаются: фотолюминесцентные гетероциклические соединения, как призводные бензохинолина, бензоксазола, оксодиазола и фталоцианина, которые проявляют высокую фотолюминесцентную активность в растворах [1,2]; и фотопроводники и электролюминесцентные соединения для электролюминесцентных устройств, большинство из которых являются гетероциклическими соединениями [3]. Присутствие гетероатома в молекуле обеспечивает инжектирование и транспорт электронов или дырок, что необходимо при создании материалов с электроактивными слоями. Пиррольная структура является примером таких молекул. Если молекула содержит два связанных кольца, то наблюдается высокая степень планарности и в результате приводит к улучшению оптических и электронных свойств.

Хорошо известны и изучены дикетопирролпиррольные структуры (DPP), которые являются примером сопряженных молекул с двумя связанными кольцами[4]. Они нашли применение в качестве красного пигмента в промышленности, в частности составляющей красной автомобильной краски[5], газового сенсора для определения водорода [6], флюоресцентных индикаторов для определения концентрации внутриклеточного Ca2+ [7].

Сопряженные пирролы также являются исходными соединениями в синтезе высоко сопряженных порфиринов. Порфириновые ядра, содержащие дополнительные гетероароматические или гетероциклические фрагменты поглощают в более длинноволновой области спектра, чем незамещенные порфирины[8]. Возможны два подхода к синтезу конденсированных пирролов и, в частности, пирролотиазолов – образование на основе пиррола тиазольного гетероцикла и другой – построение пиррольного гетероцикла на основе тиазола. Последний подход широко используется для получения расширенных пирролов, интермедиата в синтезе порфиринов. В новой работе Лаша [9] расширенные пирролы получали реакцией Бартона-Зарда. Японские химики опубликовали работу, где описан синтез пирролобензотиазолов [10]. Попытка синтезировать тиазолопирролы по Бартону-Зарду была неудачна [11].

Таким образом, конденсированные системы на основе пиррола являются потенциально важными соединениями, однако, методы их синтеза плохо разработаны и актуальной задачей является разработка новых подходов к их синтезу.

Для синтеза пиррольных интермедиатов существует большое количество методов широко представленных в обзорах [12]. В данной работе мы рассмотрим некоторые классические и новые методы синтеза замещенных пирролов, а также их реакции.

2.1. Классические методы синтеза замещенных пирролов.


Синтез Кнорра наиболее общий и широко используемый метод получения пирролов, где происходит образование связей C-N и C-C в результате реакции аминогруппы и метиленовой группы с карбонильной [13]. Он заключается в конденсации a-аминокетонов и a-амино-b-кетоэфиров с кетонами или кетоэфирами в присутствии уксусной кислоты и реже щелочи. Реакции обычно протекают с хорошим выходом. a-Аминокетоны получают восстановлением цинком в уксусной кислоте из предварительно полученных изонитрозо-b-кетоэфиров или изонитрозо-b-дикетонов[14,15].

Не менее интересной и важной является реакция взаимодействия 1,4-дикарбонильных соединений с аммиаком по Паалю-Кнорру [16,17]. Это конденсация, при которой в готовый углеродный скелет вводится атом азота при помощи аммиака или аминов. Механизм реакции, очевидно, включает нуклеофильное присоединение аммиака к двум карбонильным атомам углерода и последующее отщепление воды [18].

Отмечено также, что реакция может протекать с ацетатом аммония с хорошим выходом (~70%), причем, чем более электроноакцепторные заместители в 1,4-дикетоне, тем в более жестких условиях протекает реакция [19].

К этой же группе реакций можно отнести получение пирролов по Ганчу из a-галогенкетонов, b-кетоэфиров и аммиака [20].

Согласно предложенному механизму, сначала происходит образование С-С связи и возникает g-дикетон, который далее реагирует с амином. К реакциям этой группы относится также взаимодействие аммиака и аминов с полиокси- и полигалоидными соединениями [21].

2.2 Новые методы синтеза замещенных пирролов.


Новой модификацией метода Пааля-Кнорра является синтез замещенных пирролов (2) с использованием нитрата висмута, как катализатора. Это реакция 2,5-дикетонов(1) и основных ароматических аминов в присутствии 5% раствора нитрата висмута в дихлорметане. Мягкие условия и высокие выходы (~80%) продуктов отличительная особенность данного синтеза.

Для доказательства важности нитрата висмута в роли катализатора использовали и другие его соли. Однако положительных результатов не было получено. С разными выходами реакция может протекать и при замене 2,5-дикетона на ди- или монозамещенные дикетоны [22].

В реакции Клауса-Касса замещенные пирролы получают мягким гидролизом 2,5-диметокситетрагидрофурана (3), в результате чего образуется 2,5-дигидрокситетрагирофуран, который в ацетатном буферном растворе при комнатной температуре реагирует с первичными аминами дает N-замещенные пирролы (4) с высокими выходами и чистотой (~89-94%). При проведении реакции в жестких условиях, то есть при высоких температурах и сильнокислотных условиях, происходит разрушение структуры пиррола [23].

Другим возможным вариантом получения замещенных пирролов (7) с использованием катализатора стала реакция алкинов, содержащих легкоуходящие группы (EWG1) (5) c изоцианидами, имеющими объемные заместители (EWG2) (6). Катализатором служат фосфорорганические соединения. Протекают реакции с хорошим выходом (~60%) .

R=Me, Ph, t-Bu, CO2Et.

EWG1=CO2Et, CN.

EWG2= CO2Bu, CONEt2, P(O)(OEt)2

Dppp-1,3-бис(дифенилфосфино)пропан.

Предложенный механизм реакции предполагает нуклеофильное присоединение фосфорорганического катализатора к замещенному алкину с образованием промежуточного продукта. От изоцианида отрывается кислый протон с образованием карбаниона, который атакует атом углерода интермедиата со стороны EWG1 группы и образуется новый анионный центр. Далее происходит [3+2] циклоприсоединение и в итоге получается конечный продукт пиррол [24].

Данный способ нашел применение для синтеза муравьиного ферромона.

Также замещенные пирролы можно получить при взаимодействии гомохиральных первичных аминов (9), аминоспиртов и a-аминоэфиров с 2-пропенил-1,3-дикарбонильными соединениями (8) на золотом катализаторе. Выходы полученных продуктов, а именно 1,2,5-тризамещенных-3-ацилпирролов (10) очень высоки (~95%)

Реакция первичных аминов с 2-пропенил-1,3-дикарбонилом дает производные енамина, который подвергается региоселективному циклоаминированию в пиррол под действием NaAuCl4*5H2O катализатора. Предположительно это происходит путем антиприсоединения атома азота и частично золота по 5 положению, образуя ацетиленовую связь, винилауратного типа. Последующие протолиз связи Csp2---Au и реакция изомеризации дают замещенные пирролы [25].

Использование мягких реакционных условий при проведении реакции с 2-пропенил-1,3-дикарбонильными соединениями позволяет избежать рацемизации.

Регио- и хемоселективность взаимодействия с ацетиленовыми связями одна из интересных особенностей катализатора на основе Au (III). Несмотря на различные металлические соли, успешно катализирующие реакции внутримолекулярного присоединения аминов к кетонам, ²золотой² катализатор, как показано, обладает большей активностью в таких конденсациях.

Система, включающая TiCl4 и t-BuNH2, действует как катализатор для региоселективных реакций гидроаминирования алкинов. Гидразины в этих условиях дают гидразоны, перегруппировывающиеся в производные индола (~76%).

Реакции гидроаминирования несимметрично замещенных алкинов происходят с высокой региоселективностью.

Пирролы (11) получаются при реакции производных анилина и 1,3-диинов под действием TiCl4 и t-BuNH2 при 105º (~30%), в результате аминирования тройных связей [26].

Циклизация α-аминоалленов (12), катализируемая палладием позволяет получить пирролы (13). Реакция протекает с высоким выходом (~55%). Большое значение в этом методе придается условиям реакции, потому что также могут получаться пирролины [27].

Мартин Рейсер и Герхард Маас предложили следующий способ получения пирролов из енаминкетонов (14) [28]. 1-Диалкиламино-1,3-диарил-3-дифенилфосфанилаллены (15), как промежуточные соединения, термически превращаются в 3,5-диарилпирролы (16). Эти превращения, вероятно, заключаются в том, что сопряженные азометиновые илидные интермедиаты подвергаются или 1,5- или 1,7-циклизации. Реакция происходит в три или четыре шага, таким образом, обеспечивается простой синтеза 3,5-диарилпирролов из енаминкетонов. Выход продукта составляет ~60%.

Общий и региоселективный синтез замещенных пирролов (18) путем циклоизомеризации легко осуществить из (Z)-(2-ен-4-винил)аминов (17) (~65%). Происходит произвольная циклоизомеризация и далее присоединение к тройной связи, после чего енамины становятся более стабильными и изомеризуются в соответствующие пирролы при действии металического катализатора[29]. CuCl2 - лучший катализатор для реагентов этой реакции, замещенных по третичному атому углерода. Использование в качестве катализатора производных палладия PdX2 c KX (X = Cl, I) оказалось не эффективным.

В следующей работе [30] описано получение 2,3,4,5-тетра и 2,3,5-тризамещенных пирролов (20). Данный синтез включает в себя три этапа. Исходным соединением является дитиокарбоксилат, который на первом шаге при взаимодействии с этилглицинатом в присутствии триэтиламина дает тиоамид. На втором этапе в результате реакции алкилирования тиоамида образуется кето-N,S-ацеталь (19). Заключительным и самым важным шагом является внутримолекулярная циклизация кето-N,S-ацеталя при действии реагента Вильсмеера-Хака (РОСl3+ДМФА) с образованием замещенного пиррола.

Предложен новый подход для синтеза пирролов [31], который основывается на окислительных свободно-радикальных реакциях производных β-аминокоричной кислоты (21). В этом случае при окислении енаминов церий (IV) тетра-n-бутиламмония нитратом (TBACN) образуются иминные радикалы, которые присоединяются к двойной С–С связи исходного соединения, давая замещенные пирролы (22) с высоким выходом (~87%).

При взаимодействии карбонильного соединения с амином и нитроалкеном в расплаве аммонийной соли получали алкилзамещенные пирролы (23) (~56%). Ни катализаторы, ни органические растворители для этой реакции не требовались.[32]

Реакция енаминов олова (IV) (24) и α-галоальдегидов дает 2,4-дизамещенные пирролы (25) с высоким выходом (~75%) при комнатной температуре, даже в водных условиях [33]. Если проводить реакцию с 2-бромоацетофеноном, то в результате образуются 3,4-дизамещенные пирролы (~64%).

Был осуществлен синтез некоторых новых пирроло[3,4-b]пирролов (28) путем внутримолекулярного циклоприсоединения алкениламиноальдегидов (27) с разнообразными вторичными аминокислотами [34]. Интересно, что во всех случаях происходило образование цис продукта. Конденсация проходила в условиях реакции Дина-Старка в толуоле с высокими выходами (~78%).

Такая же реакция была проведена с N-арилглицинами. В итоге были получены цис продукты с высоким выходом (~75%).

Полифункциональные пирролы (30) можно получить в реакции N-ацетилглицина (29) с реагентами Вильсмеера (ДМФА+ POCl3) с выходом (~89-97%) [35].

Реакция 3,4-диацетил-3-гексен-2,5-диона (31) с алкил или арил первичными аминами дает замещенный пиррол (32) с хорошим выходом (~67%) [36].

При взаимодействии алкилизоцианидов (34) и бензилиден-1,3-дикетонов (33) в результате циклоприсоединения образуется замещенный пиррол (~45%) [37].

3. Реакции замещенных пирролов.


Пиррол относится к электроноизбыточным гетероциклам. Молекула его планарная и ароматичная, а атом азота выступает донором электронов и подает свои электроны в систему, вызывая тем самым увеличение электронной плотности на всем ароматическом кольце пиррола. Реакции обычно проходят по α-положениям, что связано с устойчивостью, образующегося σ-комплекса. При занятых положениях реакция возможна и по β-положениям. Реакции пирролов хорошо известны и подробно описаны в литературе [12]. В данной части литературного обзора приведены новые синтезы, изучение которых проводилось в последнее время.

Реакции электрофильного замещения наиболее характерны для пирролов и большинства его простых производных.

6-Метил-5,6-дигидроиндолизин (35) и 2- или 3-этилпроизводные были получены реакцией электрофильного ароматического замещения из 1-(2-метил-2-пропенил) пирролов. Данный синтез проходит в три шага – гидроформилирование, циклизация, дегидратация. Происходит замещение атома углерода карбонильной группы в α-положение пиррола с образованием шестичленного кольца, что является ключевым моментом в этом процессе.

Реакция проходит в мягких условиях, даже без присутствия кислот Льюиса и выход составляет 53% [38].

Также может происходить присоединение пиррола (36) с N-Tos имином в присутствии Cu(OTf)2 давая пирролосульфамиды (37) с высоким выходом (~70-85%). Присоединение происходит региоселективно по второму положению пиррольного кольца. Данная реакция проста в проведении и не требует безводных условий [39].

Обработка N-алкил-N-аллил-пирроло-2-карбоксамидов (38) каталитическим количеством производных соединений палладия дает региоселективную внутримолекулярную циклизацию с образованием бициклических пиррольных структур. Наиболее вероятна реакция по 1- и 3-положению пиррольного кольца.

Реакция начиналась с окисления и далее с циклизацией по третьему атому углерода пиррольного кольца. В результате получались две изомерные пирролопиридиновые структуры с разными выходами (30 и 35%), которые были выделены. В роли катализатора использовали производные соединения Pd (II). Были проведены реакции с различными субстратами алкил-аллиламинов [40].

Исходный для вышеописанной реакции N-алкил-N-аллил-пирроло-2-карбоксамид (38) может быть легко получен из α-карбоксипиррола (39) [41].

2-Формилпиррол (40) может быть пронитрован ацетилнитратом при -40˚С, давая 4- и 5-нитросоединения с общим выходом 71% [42].

Синтез N,N'-дизамещенных дикетопирролопирролов (DPP) (41) проводится в три этапа. На первом происходит взаимодействие этил-2-арил-4,5-дигидро-5-оксопиррол-3-карбоксилата со сложными эфирами или ангидридами в присутствии сильного основания, давая 4-ацил производные, существующие в виде E- или Z-енолов. Следующий шаг заключается в циклизации полученных соединений в растворе при температуре выше 200˚ с образованием 3,6-дизамещенных 1Н-фуро[3,4-с]пирролодионов, которые на заключительном этапе после защиты атома азота пиррольного кольца, реагируют с первичными аминами превращаясь в производные дикетопирролопирролов. Выход конечного продукта составляет 73% [4]

В эту же реакцию могут вступать и неароматические нитрилы, давая новые циклопента[с]пиррол производные (42) (69%). Полученные продукты имеют насыщенную окраску и используются как пигменты. Схема механизма реакции выглядит следующим образом [5].

Реакции нуклеофильного замещения пирролов мало изучены для пирролов, но не менее интересны для исследователя, чем другие типы реакций.

При взаимодействии 3-карбодитиопирролов (43) с СН-кислотами (цианоацетамидом, цианоацетатом) в системе KOH-ДМСО происходит образование функциональных 3-винилпирролов (44), таких как 3(1-алкилтио-2-циано-2-Х-этенил)пиррол (Х =CN, CONH2, CO2Et), при этом важным моментом является то, что замещение происходит не по пиррольному кольцу, положения которого заняты, а по функциональной группе заместителя с выходом 28-58% [43].

Предложен новый метод [44] алкилирования пирролов с такими соединениями, как аллилбромид, кротилбромид в присутствии металлического цинка в тетрагидрофуране, в результате которого получаются соответствующие 3- и 2-алкилпирролы (45), и его производные с хорошим выходом (~56-70%).

Зайцев и соавторы в своей работе [35] изучали региоселективность полифункциональных пирролов в реакциях с нуклеофилами. Исходным соединением для исследования являлся 3,5-дихлоро-1Н-пиррол-2,4-дикарбальдегид (46), который вступает в конденсацию с вторичными аминами, давая метилензамещенные пирролы, а его N-алкил производные путем нуклеофильного замещения по пятому положению дают 5-замещенные пиролы.

Выбранный замещенный пиррол имеет несколько электрофильных центров, таким образом, он может давать ряд продуктов в реакции с нуклеофилами. Особый интерес представляют различия в реакционной способности альдегидных групп во втором и четвертом положениях, что объясняется образованием водородной связи между альдегидной группой и атомом водорода при азоте. Не менее интересны и различие в электрофильности третьего и пятого положений, которое оговаривается действием индуктивного эффекта атома азота на пятое положение, а атом углерода ведет себя как β-углерод в енамине.

Реакция исходного пиррола с морфолином или пиперидином в этаноле при комнатной температуре дает чистые кристаллические продукты, такие как 3,5-дихлоро-2-(1’-пиперидинилметилен)-2Н-пиррол-4-карбальдегид (48) и 3,5-дихлоро-2-(1’-морфолинилметилен)-2Н-пиррол-4-карбальдегид (47) с хорошим выходом (~44-62%).

X = CH2 (62%)

X = O (44%) (48)

Присутствие слабокислого протона N-H группы в пирроле не позволяет провести нуклеофильное замещение Cl группы вторичными аминами, если прежде не проалкилировать пиррол в сухом ДМФА, используя метилйодид или этилбромид как среду, что в результате дает новые производные (49) с высоким выходом (~89-97%).

R = Me, Et, CH2C6H4NO2-2

N-метил и N-этил производные (49) выбрали для дальнейшего исследования реакций нуклеофильного замещения с тиоэтанолом, пиперидином, пирролидином, морфолином и диэтиламином. Реакции с вышеперечисленными реагентами дали продукты замещения по пятому положению в пирроле (~43-86%).

R = Me, Et, CH2C6H4NO2-2

X = EtS, NEt2, 1-пиперидинил, 1-пирролидинил, 1-морфолинил

В реакциях пиррола (49) с морфолином в более жестких условиях (78˚ и 70 часов) происходит образование дизамещенных производных (50) с выходом 21%.

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.