Рефераты. Системы водоснабжения






Соединения с плоскими наклонными кромками(V-образная разделка) трудно провариваются в вершине и имеют большую ширину на наружной поверхности. Соединения с U-образной разделкой свободны от этих недостатков. Недостаток соединений с U- и V-образными разделками заключается в том, что при одинаковой толщине свариваемых элементов для их заполнения требуется больше электродов, чем для заполнения Х-образной разделки. Объем направленного метала в V-образном шве примерно в два раза больше, чем в Х- образном. Следовательно, соединения с Х- образной разделкой более экономичны, чем соединения с V- образной разделкой.

Гибка металла производится на листогибочных вальцах для изготовления цилиндрических и конических поверхностей. Для получения заготовки с поверхностью сложной формы широко используют холодную штамповку из листового материала толщиной до 10мм.

Очистка металла под сварку – это удаление с его поверхности средств консервации, загрязнений, смазочно-охлаждающих жидкостей, ржавчины, окалины, заусенцев, грата и шлака. Для очистки проката, деталей и заготовок используют механические и химические методы.

К механическим методам относятся дробеструйная и дробеметная обработки, зачистка металлическими щетками, иглофрезами, шлифовальными кругами и лентами.

Химическими методами очистки обезжиривают и травят поверхности свариваемых деталей. Различают ванный и струйный методы. В первом случае детали опускают в ванны с различными растворами и выдерживают их там определенное время. Во втором случае поверхность деталей обрабатывается струями раствора, в результате чего происходит непрерывный процесс очистки. Химические методы достаточно эффективны, однако в производстве сварных конструкций используются главным образом для очистки цветных металлов.

Сборка деталей под сварку выполняется с целью установления взаимного пространственного положения элементов сварной конструкции. Для уменьшения времени сборки, а также повышения её точности применяют различные приспособления: установочные детали, прижимные механизмы, стенды, кондукторы и др.

Точность сборки контролируют шаблонами, щупами (рис.1), а также измерительными приборами.

Сварные узлы и конструкции часто собирают с помощью сварочных прихваток.

Для фиксации подлежащих сварке деталей сечение прихваток должно составлять примерно 1/3 сечения основного шва. Протяжённость прихваток составляет 15–50мм в зависимости от толщины свариваемых элементов и длины шва. Расстояние между прихватками обычно от 100мм до 1м.

Последовательность постановки прихваток для коротких, длинных и кольцевых швов показана на рис.3.

Прихватки ставят с лицевой стороны соединения. Поверхность прихватки очищают от шлака. При сварке прихватку удаляют или полностью переплавляют.

Режим сварки.


Выбор режимов сварки. Под режимом сварки понимают совокупность контролируемых параметров, определяющих условия сварки.

Основные параметры: сила сварочного тока; напряжение дуги; скорость сварки; род и полярность тока.

Дополнительные параметры: положение шва в пространстве; число проходов; температура окружающей среды.

Силу сварочного тока устанавливают в зависимости от диаметра электрода, а диаметр электрода выбирают в зависимости от толщины свариваемого изделия:


Толщина металла, мм

1–2

3

4–5

6–8

9–12

13–15

16 и более

Диаметр электрода, мм

1,5–2

3

3–4

4

4–5

5

6


Ориентировочный расчёт силы сварочного тока:

·              для диаметра электрода dэ от 3 до 6мм сварочный ток  I = (20+6) dэ k;

·              для диаметра электрода dэ < 3мм сварочный ток I =30 dэ k.

Коэффициент k при выполнении швов в нижнем положении принимают равным 1, вертикальны швов – 0,9, потолочных швов – 0,8.

При увеличении диаметра электрода и неизменном сварочном токе плотность тока уменьшается, что приводит к блужданию дуги, увеличению ширины шва и уменьшению глубины провара. Чем больше диаметр электрода, тем меньше допустимая плотность тока, так как ухудшаются условия охлаждения.

Напряжение дуги зависит от её длины. Оптимальная длина дуги выбирается между минимальной и максимальной. Длинную дугу применять не рекомендуется. Минимальная длина дуги составляет lд = 0,5 dэ, максимальная – lд = dэ +1.

Скорость сварки выбирается так, чтобы сварочная ванна заполнялась электродным металлом и возвышалась над поверхностью кромок с плавным переходом к основному металлу без подрезов и наплывов.

Род и полярность тока выбирают в зависимости от способа сварки и свариваемых материалов. Сварку на постоянном токе ведут на прямой или обратной полярности. Прямую полярность (рис.4,а) используют при сварке:

·                    с глубоким проплавлением основного металла;

·                    низко- и среднеуглеродистых и низколегированных сталей толщиной 5мм и более электродами с фтористо-кальциевым покрытием (марок УОНИ-13/45, УОНИ-13/55 и др.);

·                    чугуна.

Обратную полярность (рис.4, б) используют при сварке:

·                    с повышенной скоростью плавления электродов;

·                    низколегированных низкоуглеродистых сталей (типа 16Г2АФ), средне- и высоколегированных сталей и сплавов;

·                    тонкостенных листовых конструкций.

Переменный ток используется при сварке:

·                    низкоуглеродистых и низколегированных сталей (типа 09ГС) в строительно-монтажных условиях электродами с рутиловым покрытием;

·                    в случаях возникновения магнитного дутья;

·                    толстолистовых конструкций из низкоуглеродистых сталей.

Технологические особенности дуговой сварки.


Влияние силы сварочного тока, напряжения дуги и скорости сварки на форму и размеры шва. С увеличением сварочного тока глубина провара увеличивается, ширина шва почти не изменяется (рис.5,а).

С повышением напряжения ширина шва резко увеличивается, а глубина провара уменьшается (рис.5,б). Это важно учитывать при сварке тонкого металла. Несколько уменьшается и выпуклость шва. При одном и том же напряжении ширина шва при сварке на постоянном токе (особенно обратной полярности) значительно больше, чем ширина шва при сварке на переменном токе.

С увеличением скорости сварки сначала глубина провара возрастает (до 40–60м\ч), а затем уменьшается (рис.5,в). При этом ширина шва уменьшается постоянно. При скорости более 70–80м/ч основной металл не успевает прогреваться, и по обеим сторонам шва возможны подрезы.

Способы выполнения швов различной длины. Короткие (до 250мм) швы выполняют «напроход» (рис.6) На рисунке стрелкой показано общее направление сварки, а стрелкой – направление выполнения отдельного участка шва.

Средние (250–1000мм) швы выполняют «от середины к краям» (рис.7). Работают два сварщика.

Длинные (свыше 1000мм) швы выполняют обратноступенчатым способом (рис.8). Швы разбивают на отдельные участки по 150– 00мм. Сварка на каждом из них ведется в направлении, обратном общему направлению сварки.

Длинные швы выполняют обратноступенчатым способом от середины к краям (рис.9), а также обратноступенчатым способом «вразброс» (рис.10). Такими способами сваривают длинные швы однопроходных стыковых соединений, первый проход многопроходных швов, а также угловые швы.

Обратноступенчатая сварка эффективно уменьшает напряжения и деформации.

Сварка толстостенных конструкций. Однослойный однопроходный шов выполняется за один проход.

При сварке металла большой толщины производят разделку кромок и швов выполняют слоями, каждый из которых накладывают за один проход (многослойный многопроходный). Многослойный шов (рис.11) обычно используется для стыковых соединений. Многослойный многопроходный шов (рис.12) чаще применяется для угловых и тавровых соединений.

Сварка за один проход предпочтительнее при ширине шва не более 14–15мм, так как дает меньше остаточных деформаций. При толщине металла более 15мм сварка каждого слоя «напроход» нежелательна, поскольку первый слой успевает остыть, и в нём возникают трещины.

На рис.13 показаны особенности выполнения подварочного (1) и декоративного (2) шва.

Для равномерного прогрева металла по всей длине швы накладывают: «двойным слоем», «каскадом», «горкой», «поперечной горкой», «блоками».

При сварке «двойным слоем» второй слой накладывают по неостывшему первому после удаления сварочного шлака в противоположном направлении на длине 200–400мм.

Рассмотрим наложение швов при толщине металла бале 15мм.

При сварке «каскадом» (рис.14,а) шов разбивают на участки по 200мм. После сварки первого слоя первого участка, не останавливаясь, продолжают выполнять первый слой на соседнем участке. Тогда каждый последующий слой накладывается на не успевший остыть металл предыдущего слоя.

Сварка «горкой» (рис.14,б) – разновидность каскадного метода.

Сначала приблизительно определяется середина шва и выполняется первый валик длиной 100–300мм, что соответствует длине шва, получаемого при расплавлении одного электрода диаметром 3–5мм. Затем с поверхности валика сварщик отступает на расстояние 200мм и проваривает корень шва в сторону первого валика с таким расчетом, чтобы его окончание оказалось на поверхности первого валика. Третьим электродом выполняют шов по поверхности первого валика. После смены электрода проваривают вновь корень шва, продолжая шов, полученный вторым и третьим электродами. После зачистки полученного шва отступают от его окончания на 200–300мм и выполняют следующий слой шва.

При этом надо обязательно учитывать, что  для снижения температурных деформаций каждый последующий шов выполняют в противоположном направлении к предыдущему. Такая технология сварки деталей большой толщины позволяет при одновременном заполнении швов по длине наращивать их высоту.

После выхода металла в середине шва на уровень поверхности деталей осуществляют заварку левой и правой части шва, после чего выполняют декоративный слой.

Сваривать металл можно и двум сварщикам одновременно, но работу каждый производит от середины к краям; это позволит компенсировать температурные деформации, возникающие от работы каждого из них.

Сварка «каскадом» и сварка «горкой» – это обратноступенчатая сварка не только по длине, но и по сечению шва, причем зона сварки всегда остается горячей.

При сварке «блоками» (рис.14,в) шов заполняют отдельными ступенями по всей высоте сечения шва. Применяют при соединении деталей из сталей, закаливающихся при сварке.

Техника сварки.


Зажигание сварочной дуги. Дугу зажигают коротким прикосновением электрода к изделию (касанием) или чирканьем концом электрода о поверхность металла. Последний предпочтительнее, но он неудобен в узких, труднодоступных местах.

Положение электрода при сварке. Угол наклона электрода к свариваемому изделию и направлению сварки существенно влияет на качественное формирование шва.

Защиту сварочной дуги и жидкой ванны от окружающего воздуха осуществляют газообразующие и шлакообразующие элементы в покрытии электрода.

Газообразующие элементы при плавлении электрода образуют газовый «пузырь», который защищает сварочную дугу и жидкую ванну от воздуха.

Шлакообразующие, превращаясь в жидкий шлак, защищают металл шва и участвуют в металлургических процессах. Сохраняя сварочную ванну в жидком состоянии 2–3с, шлак позволяет образовавшимся газовым пузырям и шлаковым включениям всплыть на поверхность.

Поддержание металла шва в жидком состоянии более длительное время позволяет сформировать валик правильной формы с плавным переходом к основному металлу и равномерными чешуйками с минимальными перепадами между ними.

Важно, чтобы жидкий шлак укрывал расплавленный металл шва, следуя за жидкой ванной, сохраняя при этом теплоту и тем самым, отдаляя время начала кристаллизации шва. При этом сварочная ванна под электродом должна быть свободной от жидкого шлака, что позволяет наблюдать за формированием шва и за проплавлением основного металла. Для этого необходимо сварку выполнять под определенным углом наклона электрода по отношению к изделию и направлению сварки.

Существует три положения наклона электрода: сварка «углом вперед»; сварка «под прямым углом»; сварка «углом назад».

Наклон электрода влияет на глубину проплавления: максимальная глубина достигается при сварке «углом назад», минимальная глубина – при сварке «углом вперед», средняя глубина – при сварке «под прямым углом».

Сварка «углом вперед» осуществляется при движении расплавленного шлака впереди электрода. Он накапливается в большом количестве и натекает на основной металл, что мешает процессу сварки. Сварочная дуга начинает «блуждать», а иногда и гаснет. Сварной шов становится неровным.

Возможны непровары и шлаковые включения. В этом случае необходимо выровнять положение электрода до вертикального.

Сварка «углом вперед» применяется:

·  при заварке корневых швов во всех пространственных положениях, когда зазор между кромками увеличен или нестабилен;

·  при отклонении сварочной дуги в сторону выполняемого шва;

·  в тех случаях, когда жидкий шлак впереди электрода не мешает и когда необходимо минимальное проплавление основного металла;

·  при сварке горизонтальных, вертикальных, потолочных швов;

·  при сварке неповоротных стыков трубопроводов с толщиной стенки 3мм.

Сварка «под прямым углом» позволяет жидкому шлаку двигаться следом за сварочной ванной, накрывая жидкий металл шва сразу за электродом. Это обеспечивает качественное формирование валика. Поверхность шва имеет плавный переход к основному металлу и характеризуется минимальными перепадами между чешуйками. Жидкий шлак, идущий впереди, легко вытесняется по обе стороны сварочного валика более тяжелым жидким металлом шва. Когда шлак начинает мешать процессу сварки, необходимо наклонить электрод в сторону направления сварки до восстановления нормального процесса.

Сварку «под прямым углом» рекомендуется применять в случаях:

·  наплавки поверхностей в нижнем, горизонтальном и потолочном положениях;

·  сварки заполняющих слоев и лицевых валиков в стыковых соединениях во всех пространственных положениях;

·  сварки, когда не требуется значительного проплавления основного металла и когда шлак впереди электрода не мешает;

·  сварки в трудных местах.

При сварке электродами с рутиловым покрытием наклон электрода в сторону будущего шва всегда должен быть больше, чем при сварке электродами с основным покрытием.

Сварка «углом назад» является самым распространенным способом. При чрезмерном наклоне электрода жидкий шлак под давлением дуги вытесняется назад. Появляется «оголенный» участок жидкого металла шва, свободный от шлака. Отставание жидкого шлака от сварочной ванны отрицательно сказывается на формировании шва. Происходит быстрое остывание металла шва (кристаллизация).

Валик получается с неравномерными чешуйками и со значительными перепадами по краям при переходе к основному металлу. В этом случае необходимо выровнять положение электрода до момента, когда жидкий шлак будет следовать сразу же за ним.

Данный метод рекомендуется при сварке:

·  корневых швов в угловых и стыковых соединениях при минимальном зазоре;

·  толстостенных конструкций, когда необходимо получить большую глубину проплавления;

·  методом опирания козырька электрода на изделие;

·  электродами с рутиловым покрытием марок МР, ОЗС и других, ввиду образования большого количества шлака и его высокой жидкотекучести.

Окончание сварки. В конце шва нельзя обрывать дугу сразу. Электрод (рис.15) перемещают на верхний край сварочной ванны (положения 1, 2) и затем быстро отводят (положение 3) от кратера.

Заварка кратера. Используют два способа. По первому способу (рис.16,а) дугу обрывают в конце сварного шва (положение 1), а затем повторно зажигают (положение 2) для формирования необходимой высоты шва.

По второму способу (рис.16,б) из положения 1, не обрывая дуги, смещают электрод на 10–15мм в положение 2, а затем в положение 3, после чего дугу обрывают.

Влияние угла наклона электрода и изделия на форму шва. При сварке «углом вперед» (рис.17,а) уменьшается глубина провара и высота выпуклости шва, но заметно увеличивается его ширина, что позволяет использовать этот способ при сварке металла небольшой толщины. Лучше проплавляются кромки, поэтому возможна сварка на повышенных скоростях.

При сварке «углом назад» (рис.17,б) глубина провара и высота выпуклости увеличиваются, но уменьшается ширина. Прогрев кромок недостаточен, поэтому возможны несплавления и образование пор.

При сварке «на спуск» (рис.17,в) глубина провара уменьшается, а ширина шва увеличивается.

При сварке «на подъем» (рис.17,г) глубина провара увеличивается, а ширина шва уменьшается.

Манипулирование электродом. Сварщик электродом осуществляет три основных движения (рис.18).

● Поступательное перемещение (1) вдоль оси электрода обеспечивает подачу электрода, постоянство длины дуги и скорости плавления. Чем быстрее плавится электрод, тем больше скорость его перемещения вдоль оси.

● Прямолинейное перемещение (2) вдоль оси шва обеспечивает необходимую скорость сварки и качественное формирование шва. Скорость этого движения зависит от силы тока, диаметра электрода, скорости его плавления, вида шва и других факторов. При отсутствии поперечных движений электрода получается узкий шов (ниточный валик) шириной примерно 1,5 диаметра электрода. Такие швы применяют при сварке тонких листов, наложении первого (корневого) слоя многослойного шва, сварке способом опирания и т. д.

Движение электрода в направлении наложения сварного шва может быть быстрым и замедленным. При чрезмерно быстром движении основной металл не успевает расплавляться, кратер не образуется, и основной металл плохо соединяется со сварным швом. При быстром движении электрода сварной шов получается узким, неровным и неплотным. Если движение электрода замедленное, возможны перегрев и пережог металла. В таких случаях обычно образуются подрезы по краям сварного шва, а сам шов получается толстым и широким.

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.