Рефераты. Теоретические основы математических и инструментальных методов экономики






Если ,  -- координатные столбцы векторов и , то скалярное произведение можно задать формулой

Предоставляем читателю самостоятельно убедиться в совпадении этой формулы с формулой (18.3)

Определение 18.5   Вещественное линейное пространство, в котором задано скалярное произведение называется евклидовым пространством.         

В трехмерном пространстве с помощью склярного произведения определялся угол между векторами. В евклидовом пространстве тоже можно определить угол между векторами. Но угол в -мерном пространстве не имеет существенного значения, кроме одного случая. В трехмерном проcтранстве два вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю.

Определение 18.6   Два вектора евклидова пространства называются ортогональными, если их скалярное произведение равно нулю.

 Определение 18.7   Комплексное линейное пространство, в котором введено скалярное произведение, называется унитарным пространством.         

В унитарном пространстве модуль вектора и условие ортогональности вводятся с помощью скалярного произведения так же, как в евклидовом пространстве. В координатной записи

Гильбертово пространство, математическое понятие, обобщающее понятие евклидова пространства на бесконечномерный случай. Возникло на рубеже 19 и 20 вв. в виде естественного логического вывода из работ нем. математика Гильберта в результате обобщения фактов и методов, относящихся к разложениям функций в ортогональные ряды и к исследованию интегральных уравнений. Постепенно развиваясь, понятие «Г. п.» находило все более широкие приложения в различных разделах математики и теоретической физики; оно принадлежит к числу важнейших понятии математики.

  Первоначально Г. п. понималось как пространство последовательностей со сходящимся рядом квадратов (т.н. пространство l2). Элементами (векторами) такого пространства являются бесконечные числовые последовательности

  x = (x1, x2,..., xn,...)

  такие, что ряд x21 + x22 +... + х2n + ... сходится. Сумму двух векторов х + y и вектор lx, где l — действительное число, определяют естественным образом:

  x + y = (x1 + y1,..., xn + yn,...),

  lx = (lx1, lx2, ..., lxn,...)/

  Для любых векторов х, y Î l2 формула

  (x, y) = x1y1 + x2y2 + ... +xnyn + ...

  определяет их скалярное произведение, а под длиной (нормой) вектора х понимается неотрицательное число

 

  Скалярное произведение всегда конечно и удовлетворяет неравенству |(х, у)| £ ||x|| ||y||. Последовательность векторов хn называется сходящейся к вектору х, если ||хn—х|| ® 0 при n ® ¥. Многие определения и факты теории конечномерных евклидовых пространств переносятся и на Г. п. Например, формула

 

  где 0 £ j £ p определяет угол j между векторами х и у. Два вектора х и у называются ортогональными, если (х, у) = 0. Пространство l2 полно: всякая фундаментальная последовательность Коши элементов этого пространства (т.е. последовательность хn, удовлетворяющая условию ||хп—хm||® 0 при n, m ® ¥) имеет предел. В отличие от евклидовых пространств, Г. п. l2 бесконечномерно, т.е. в нём существуют бесконечные системы линейно независимых векторов; например, такую систему образуют единичные векторы

  e1 = (1, 0, 0,...), e2 = (0, 1, 0,...),...

  При этом для любого вектора x из l2 имеет место разложение

  x = x1e1 + x2e2 +...     (1)

  по системе {en}.

Операторы (общие понятия). Функционалы. Пусть X, Y — линейные пространства; отображение A: X ® Y называется линейным, если для x, у Î X, l, m Î ,

где x1,..., xn и (Ax)1,..., (Ax) n — координаты векторов x и Ax соответственно. При переходе к бесконечномерным линейным топологическим пространствам положение значительно усложняется. Здесь прежде всего необходимо различать непрерывные и разрывные линейные операторы (для конечномерных пространств они всегда непрерывны). Так, действующий из пространства L2 (а, b) в него же оператор

   

(где K (t, s) — ограниченная функция — ядро А) — непрерывен, в то время как определённый на подпространстве C1(a, b) Ì L2(a, b) оператор дифференцирования

    

является разрывным (вообще, характерной особенностью разрывных операторов является то, что они не определены на всём пространстве).

Линейный функционал, обобщение понятия линейной формы на линейные пространства. Линейным функционалом f на линейном нормированном пространстве Е называют числовую функцию f(x), определённую для всех х из Е и обладающую следующими свойствами:

  1) f(x) линейна, т. е. f((x + (у) = (f(x) + (f(y),

  где х и у — любые элементы из Е, a и b — числа;

  2) f(x) непрерывна.

  Непрерывность f равносильна требованию, чтобы  было ограничено в Е; выражение  называют нормой f и обозначают .

  В пространстве С [a, b] функций a(t), непрерывных при a ( t ( b, с нормой  Л. ф. являются, например, выражения:

  ,

  f2[((t)] = ((t0), a ( t0 ( b.

  В гильбертовом пространстве Н Л. ф. суть скалярные произведения (l, х), где l — любой фиксированный элемент пространства Н; ими исчерпываются все Л. ф. этого пространства.

  Во многих задачах можно из общих соображений установить, что та или иная величина является Л. ф. Например, к Л. ф. приводит решение линейных дифференциальных уравнений с линейными краевыми условиями. Поэтому очень существенным является вопрос об общем аналитическом выражении Л. ф. в разных пространствах.

  Совокупность всех Л. ф. данного пространства Е превращается в линейное нормированное пространство , если определить естественным образом сложение Л. ф. и умножение их на числа. Пространство  называют сопряжённым к ; это пространство играет большую роль при изучении Е.

  С понятием Л. ф. связано понятие слабой сходимости. Последовательность {xn} элементов линейного нормированного пространства называют слабо сходящейся к элементу х, если

 

Моделирование как метод научного познания. Понятия модели и моделирования. Элементы и этапы процесса моделирования. Виды моделирования. Особенности математического моделирования экономических объектов. Производственно-технологический и социально-экономический уровни экономико-математического моделирования. Особенности экономических наблюдений и измерений. Случайность и неопределенность в экономико-математическом моделировании. Проверка адекватности моделей.

Моделирование в научных исследованиях  стало  применяться еще в  глубокой  древности  и постепенно захватывало все новые области научных знаний:  техническое  конструирование,  строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки.  Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в.  Однако методология моделирования долгое время развивалась независимо отдельными науками.  Отсутствовала единая система понятий, единая терминология. Лишь постепенно стала осознаваться  роль  моделирования как универсального метода научного познания.

Термин "модель"  широко  используется  в различных сферах человеческой деятельности и имеет множество  смысловых  значений. Рассмотрим  только такие "модели",  которые являются инструментами получения знаний.

Модель - это такой материальный или мысленно представляемый объект,  который в  процессе  исследования  замещает  объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале

Под моделированием понимается процесс построения, изучения и применения моделей.  Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций,  и умозаключения по аналогии,  и  конструирование научных гипотез.

Главная особенность моделирования в том,  что  это  метод опосредованного познания с помощью объектов-заместителей.  Модель выступает как своеобразный инструмент  познания,  который исследователь ставит  между собой и объектом и с помощью которого изучает интересующий его объект.  Именно эта  особенность метода моделирования  определяет специфические формы использования абстракций,  аналогий, гипотез, других категорий и методов познания.

Необходимость использования метода моделирования  определяется тем,  что  многие объекты (или проблемы,  относящиеся к этим объектам) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Процесс моделирования включает три элемента: 

·        субъект (исследователь),

·        объект исследования, 

·        модель, опосредствующую отношения познающего субъекта и познаваемого объекта.

     Пусть имеется  или необходимо создать некоторый объект А. Мы конструируем (материально или мысленно) или находим  в  реальном мире другой объект В - модель объекта А.  Этап построения модели предполагает наличие  некоторых  знаний  об  объекте-оригинале. Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос  о  необходимости  и  достаточной  мере сходства оригинала и модели требует конкретного анализа.  Очевидно, модель  утрачивает  свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного  во  всех  существенных  отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая  модель замещает оригинал лишь в строго ограниченном смысле.  Из этого следует,  что для одного  объекта  может быть построено  несколько  "специализированных" моделей,  концентрирующих внимание на  определенных  сторонах  исследуемого объекта или  же характеризующих объект с разной степенью детализации.

На втором  этапе  процесса моделирования модель выступает как самостоятельный объект исследования.  Одной из форм такого исследования является  проведение  "модельных"  экспериментов, при которых сознательно  изменяются  условия  функционирования модели и  систематизируются данные о ее "поведении".  Конечным результатом этого этапа является множество знаний о модели.

На третьем  этапе  осуществляется перенос знаний с модели на оригинал - формирование множества знаний об объекте. Этот процесс переноса  знаний  проводится по определенным правилам. Знания о модели  должны  быть  скорректированы  с  учетом  тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели. Мы можем с достаточным основанием переносить какой-либо результат с модели на оригинал, если этот результат необходимо связан с признаками сходства оригинала и  модели.  Если  же  определенный результат модельного исследования связан с отличием модели от  оригинала,  то  этот результат переносить неправомерно.

Четвертый этап - практическая проверка получаемых  с  помощью моделей знаний и их использование для построения обобщающей теории объекта,  его преобразования или управления им.

Для понимания сущности моделирования важно не упускать из виду, что моделирование - не единственный источник  знаний  об объекте. Процесс  моделирования  "погружен" в более общий процесс познания.  Это обстоятельство учитывается  не  только  на этапе построения  модели,  но  и на завершающей стадии,  когда происходит объединение и обобщение  результатов  исследования, получаемых на основе многообразных средств познания.

Моделирование - циклический процесс. Это означает, что за первым четырехэтапным циклом может последовать второй,  третий и т.д.  При этом знания об исследуемом объекте  расширяются  и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные  после  первого  цикла   моделирования, обусловленные малым  знанием  объекта  и ошибками в построении модели, можно исправить в последующих  циклах.  В  методологии моделирования, таким образом, заложены большие возможности саморазвития.

Большинство объектов, изучаемых экономической наукой, может быть  охарактеризовано  кибернетическим  понятием  сложная система.

Наиболее распространено понимание системы как совокупности элементов, находящихся во взаимодействии и образующих некоторую целостность,  единство.  Важным  качеством любой системы является эмерджентность - наличие таких  свойств,  которые  не присущи ни  одному из элементов,  входящих в систему.  Поэтому при изучении систем недостаточно пользоваться методом их расчленения на  элементы  с последующим изучением этих элементов в отдельности. Одна из трудностей экономических исследований – в том, что  почти  не существует экономических объектов, которые можно  было  бы  рассматривать  как  отдельные  (внесистемные) элементы.

Сложность системы определяется количеством входящих в нее элементов, связями между этими элементами, а также взаимоотношениями между  системой  и  средой.  Экономика страны обладает всеми признаками очень сложной системы.  Она объединяет огромное число элементов,  отличается многообразием внутренних связей и связей с другими системами (природная  среда,  экономика других стран  и  т.д.).  В  народном хозяйстве взаимодействуют природные, технологические, социальные процессы, объективные и субъективные факторы.

Сложность экономики иногда рассматривалась как  обоснование невозможности ее моделирования,  изучения средствами математики. Но такая точка зрения в принципе неверна. Моделировать можно объект любой природы и любой сложности.  И как раз сложные объекты представляют наибольший интерес для моделирования; именно здесь  моделирование  может  дать  результаты,  которые нельзя получить другими способами исследования.

Потенциальная возможность  математического  моделирования любых экономических объектов и процессов не означает,  разумеется, ее успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике.  И хотя нельзя указать абсолютные границы математической  формализуемости  экономических   проблем, всегда будут  существовать  еще неформализованные проблемы,  а также ситуации,  где математическое моделирование недостаточно эффективно.

Уже длительное  время главным тормозом практического применения математического моделирования в экономике является наполнение разработанных  моделей  конкретной и качественной информацией. Точность и полнота первичной  информации,  реальные возможности ее  сбора  и  обработки во многом определяют выбор типов прикладных моделей.  С другой стороны,  исследования  по моделированию экономики  выдвигают  новые требования к системе информации.

В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация  имеет  существенно различный характер  и происхождение.  Она может быть разделена на две категории:  о прошлом развитии и современном  состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов,  включающую данные об ожидаемых  изменениях их внутренних параметров и внешних условий (прогнозы).  Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.

Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит  отметить только специфические проблемы экономических наблюдений,  связанные с  моделированием  экономических процессов.

В экономике многие процессы являются массовыми;  они  характеризуются закономерностями,  которые  не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.

Другая проблема порождается  динамичностью  экономических процессов, изменчивостью  их  параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением,  необходимо иметь устойчивый поток новых данных.  Поскольку наблюдения за экономическими процессами и  обработка  эмпирических  данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется  корректировать исходную информацию с учетом ее запаздывания.

Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в  значительной степени предопределяет и точность конечных результатов количественного анализа посредством  моделирования. Поэтому  необходимым  условием эффектного использования математического моделирования является совершенствование  экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных  сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.

В процессе моделирования возникает  взаимодействие  "первичных" и "вторичных" экономических измерителей.  Любая модель народного хозяйства опирается на определенную систему экономических измерителей (продукции,  ресурсов, элементов и т.д.). В то же время одним из важных результатов  народнохозяйственного моделирования является получение новых (вторичных) экономических измерителей - экономически обоснованных цен  на  продукцию различных отраслей,   оценок  эффективности  разнокачественных природных ресурсов,  измерителей общественной полезности  продукции. Однако  эти измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для хозяйственных моделей.

С точки зрения "интересов" моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются:  оценка результатов интеллектуальной деятельности (особенно в сфере  научно-технических разработок, индустрии информатики),  построение обобщающих показателей социально-экономического развития,  измерение эффектов обратных  связей (влияние хозяйственных и социальных механизмов на эффективность производства).

Для методологии планирования  экономики  важное  значение имеет понятие неопределенности экономического развития. В исследованиях по экономическому  прогнозированию  и  планированию различают два типа неопределенности: "истинную", обусловленную свойствами экономических процессов,  и "информационную",  связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределенность нельзя смешивать с объективным существованием  различных вариантов экономического развития и возможностью сознательного выбора среди них  эффективных вариантов. Речь идет о принципиальной невозможности точного выбора единственного (оптимального) варианта.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.