Рефераты. Химия отрасли






Образовавшуюся в результате проведенной реакции окраску ра­створа измеряют на фотоэлектроколориметре в кюветах с толщи­ной поглощающего свет слоя 10 мм при светофильтрах с длиной световой волны 440 нм по сравнению с дистиллированной водой.

Полученную величину оптической плотности используют для расчета количества альдегидов (мг/дм3 безводного спирта) по градуировочному графику, построенному по стандартным ра­створам ацетальдегида или по расчетному уравнению, выведенному на основании градуировочного графика (см. Приложение 3).

Расчетное уравнение имеет вид:

Сал = ADA1;

где Сал – массовая концентрация альдегидов, мг/дм3 безводного спирта;

      А и А1 — расчетные коэффициенты, полученные экспериментально;

      D — опти­ческая плотность.

 Расчетные коэффициенты в формуле необходимо опреде­лять для каждой марки фотоэлектроколориметра и партии исполь­зуемого пирогаллола А. Для этого следует построить градуировочный график зависимости оптической плотности от содержания аль­дегидов в водке.

Построение градуировочного графика. Для по­строения градуировочного графика используют типовые спиртовые растворы (стандартные образцы) с содержанием альдегидов (ацетальдегида) 2; 3; 4 и 10 мг в 1 дм3 безводного спирта.

Проводят колориметрическую реакцию этих растворов с раствором пирогаллола А по вышеописанной методике.

Полученные после колориметрирования значения оптических плотностей откладывают на оси ординат, а соответствующую этим значениям массовую концентрацию альдегидов – на оси абсцисс.

Оптическую плотность каждого раствора определяют не менее трех раз и из полученных значений находят среднее арифметическое.

Зависимость между оптической плотностью и количеством аль­дегидов в анализируемых растворах на градуировочном графике должна быть прямолинейной.

7.4. Определение массовой концентрации сивушного масла

Сивушное масло представляет собой смесь н–пропилового, изобутилового и амиловых спиртов. По внешнему виду оно представляет собой прозрачную жидкость без механических примесей от светло–желтого до красно–бурого цвета.

Массовую концентрацию сивушного масла в водке определяют визуально с помощью типовых спиртовых растворов (стандартных эталонов) или фотоэлектроколориметрическим методом, который основан на измерении оптической плотности анализируемого раствора, полученного пос­ле реакции присутствующих в водке высших спиртов (сивушного масла) с салициловым альдегидом в присутствии серной кислоты.

Реактивы: концентрированная серная кислота; 1,0 %-ный раствор салицилового альдегида.

Оборудование: фотоэлектроколориметр КФК-3.

Проведение анализа. Концентрированную серную кис­лоту в объеме 10см3 вносят в пробирку с пришлифованной пробкой, осторожно по стенке пробирки приливают 5 см3 испытуемой водки с таким расчетом, чтобы не произошло смешивания обеих жидко­стей, а образовалось два слоя. Затем приливают 0,7 см3 1 %-ного спиртового раствора салицилового альдегида, пробирку закрывают пробкой, содержимое энергично перемешивают и выдерживают в кипящей водяной бане в течение 10 мин, отмечая время по секундо­меру. Затем пробирку погружают в проточную холодную воду или водяную баню со льдом для быстрого охлаждения реакционной смеси до комнатной температуры. Интенсивность образовавшейся в результате проведенной реакции желтой окраски измеряют не позд­нее чем через 5 мин на фотоэлектроколориметре любой марки при светофильтре с длиной световой волны 540 нм в кюветах с толщи­ной поглощающего свет слоя 20 мм, а затем сравнивают с дистилли­рованной водой.

Обработка результатов. Для расчета массовой концен­трации сивушного масла в водке следует внести поправ­ку на присутствующие в нем альдегиды, также реагирующие с сали­циловым альдегидом. Для этого из полученного после колориметрирования значения оптической плотности следует вычесть значе­ние расчетной оптической плотности, соответствующее тому количеству альдегидов, которое определено в анализируемой водке по графику или вычислено по уравнению (см. п. 7.3). Эти значения расчетных опти­ческих плотностей приведены в таблице:


Расчетные значения оптической плотности для определения

поправки на содержание сивушного масла в водке

Массовая концентрация альдегидов в

водке в пересчете на уксусный, мг/дм3 безводного спирта

Расчетные значения оптической плотности по фотоэлектроколориметрам КФК-2 и КФК-3

1,5

2,0

2,5

3,0

4,0

5,0

6,0

7,0

7,5

8,0

8,5

9,0

10,0

0,010

0,015

0,020

0,025

0,040

0,050

0,060

0,075

0,080

0,085

0,090

0,100

0,110

Величину оптической плотности, полученную после вычитания расчетной оптической плотности (поправка на альдегиды), исполь­зуют для расчета количества сивушного масла (мг/дм3 безводного спирта) по градуировочному графику, построенному по стандартным ра­створам сивушного масла или по расчетному уравнению, выведенному на основании градуировочного графика.

Расчетное уравнение имеет вид:

Сс.м. = КD – K1,

где Сс.м. – массовая концентрация сивушного масла, мг/дм3 безводного спирта;

      К и К1 — расчетные коэффициенты, полученные экспериментально;

      D — опти­ческая плотность.

Расчетные коэффициенты в формуле необходимо опреде­лять для каждой марки фотоэлектроколориметра, исполь­зуемого в работе. Для этого следует построить градуировочный график зависимости оптической плотности от содержания сивушного масла.

Построение градуировочного графика. Для по­строения градуировочного графика используют стандартные ра­створы, содержащие сивушное масло (смесь изоамилового и изобутилового спиртов (3:1)) в пересчете на безводный спирт в следующем количестве: 2; 3; 4; 8; 10 и 15 мг в 1 дм3.

Проводят колориметрическую реакцию указанных стандартных растворов с 1%-ным спиртовым раствором салицилового альдегида по методике, приведенной выше. По полученным после колориметрирования величинам оптических плотностей и массовой кон­центрации сивушного масла в анализируемых стандартных раство­рах строят градуировочный график, откладывая на оси абсцисс мас­совую концентрацию сивушного масла, а на оси ординат—опти­ческую плотность, соответствующую каждому содержанию сивушного масла в анализируемом растворе.

Определение проводят не менее трех раз и из полученных значе­ний находят среднее арифметическое.

Полученный градуировочный график используют для вычисления массовой концентрации сивушного масла в анализиру­емом растворе по величине оптической плотности.


7.5. Определение массовой концентрации сложных эфиров


Массовую концентрацию сложных эфиров в водке определяют фотоэлектроколориметрическим методом, который основан на измерении интенсивности окраски, полученной в процессе реакции хлорида железа с гидроксамовой кислотой, образующейся в результате взаи­модействия сложных эфиров испытуемой водки с гидрохлоридом гидроксиламина:

Гидроксамовая кислота с железом образует комплексное соединение.

Реактивы: раствор гидрохлорида гидроксиламина концентрации 0,05моль/дм3: навеску гидрохлорида гидроксиламина массой 69,6 г растворяют в дистиллированной воде в мерной колбе  вместимостью 500 см3, объем доводят до метки и перемешивают; раствор NaOH концентрацией 3,5моль/дм3: навеску NaOH массой 70,01 г растворяют в дистиллированной воде в мерной колбе  вместимостью 500 см3, объем доводят до метки и перемешивают; раствор хлорида железа (III) концентрации 0,1 моль/дм3; раствор соляной кислоты концентрации 4 моль/дм3; раствор этилацетата в этиловом ректификованном спирте: к навеске этилацетата массой 25,0 г, взвешенной в склянке с пришлифованной пробкой, приливают небольшое количество этилового ректификованного спирта концентрацией 96,4 % об. сортов «Люкс» или «Экстра». Полученный раствор количественно переносят в мерную колбу на 500 см3, куда предварительно наливают 50 см3 этилового спирта сортов «Люкс» или «Экстра». Объем склянки доводят спиртом до метки и перемешивают.

Оборудование: фотоэлектроколориметр КФК-3.

Подготовка к анализу. Перед определением массовой концентрации сложных эфиров в водках, содержащих сахара, име­ющие свободные альдегидную или кетонную группу (глюкоза, фруктоза, лактоза и др.), предварительно следует проводить пере­гонку, которую осуществляют по методике, изложенной в п.7.1.

Приготовление раствора реакционной смеси. Перед проведением анализа готовят раствор реакционной сме­си путем смешивания равных объемов раствора гидрохлорида гидроксиламина и раствора гидроксида натрия, учитывая, что на про­ведение анализа одного образца испытуемого спирта расходуется 12 см3 смеси. Полученную смесь перемешивают и используют для анализа не позднее чем через 6 ч с момента приготовления.

 Проведение анализа. Для проведения анализа требует­ся приготовить испытуемые растворы А и Б.

В две конические колбы вместимостью 50 см3 вносят по 6 см3 ре­акционной смеси. Затем в первую колбу приливают 3 см3 раствора соляной кислоты и перемешивают в течение 1 мин. Содержимое этой колбы именуют раствором Б, а содержимое второй колбы – раствором А.

В обе колбы приливают по 18 см3 анализируемой водки и одно­временно осторожно перемешивают круговыми движениями в те­чение 2 мин.

Во вторую колбу с раствором А приливают 3 см3 раствора соляной кислоты и также перемешивают в течение 1 мин.

В обе колбы добавляют по 3 см3 раствора хлорида железа и одно­временно перемешивают их содержимое вышеописанным образом в течение 1 мин.

Интенсивность образовавшейся окраски анализируемого ра­створа А измеряют в сравнении с раствором Б в кюветах с шириной рабочей грани 50 мм при светофильтре с длиной световой волны 540 нм. Полученную величину оптической плотности используют для расчета содержания сложных эфиров (Cэф, в мг/дм3 безводного спирта) по градуировочному графику, построенному по стандартным ра­створам этилацетата или по расчетному уравнению, выведенному на основании градуировочного графика.

Расчетное уравнение имеет вид:        Cэф = D•100/ 0,0256•C ,

где  D – оптическая плотность;

      0,0303– постоянный коэффициент, полученный экспериментально;

      С– объемная доля этилового спирта в испытуемом образце водки, %.

Построение градуировочного графика. В пять мерных колб вместимостью 200 см3 вносят соответственно 1; 2; 4; 6 и 8 см3 основного стандартного раствора этилацетата, объем доводят до метки этиловым спиртом сорта «Люкс» или «Экстра» и переме­шивают. Получают рабочие стандартные растворы.

Полученные растворы используют для проведения реакции по вышеописанной методике. Оп­тическую плотность растворов измеряют в тех же условиях.

Одновременно проводят реакцию по приведенной методике с образцом этилового ректификованного спирта (безэфирного), ис­пользованного для приготовления стандартных растворов этилаце­тата.

Из значений оптических плотностей, измеренных после колориметрирования рабочих стандартных растворов, вычитают опти­ческую плотность, полученную после колориметрирования без­эфирного образца этилового спирта. В результате получают значе­ния оптических плотностей, соответствующие содержанию слож­ных эфиров 2,5; 5; 10; 15 и 20 мг/дм3.

На основании полученных данных строят градуировочную кри­вую, откладывая по оси абсцисс количество сложных эфиров в мил­лиграммах, а по оси ординат — соответствующую величину опти­ческой плотности.

7.6. Определение объемной доли метилового спирта

Объемную долю метилового спирта в водке определяют визуаль­но с помощью типовых спиртовых растворов или фотоэлектроколориметрическим методом, основанным на измерении интенсивности окраски в результате взаимодействия динатриевой соли хромотроповой кислоты (1,8–диокси-нафталин–3,6–дисульфокислота) с формальдегидом, образующимся в результате окисления метилового спирта, содержащегося в испытуемой водке, перманганатом калия.

Реактивы: раствор перманганата калия с массовой долей 1 %: навеску перманганата калия массой 5,0 г растворяют в 150 см3 дистиллированной воды в мерной колбе на 500 см3. Объем доводят до метки и перемешивают. Полученный раствор выдерживают в темноте в течение 2 суток; раствор динатриевой соли хромотроповой кислоты с массовой долей 10 %: навеску динатриевой соли хромотроповой кислоты массой 25 г растворяют в 15 см3 дистиллированной воды в мерной колбе вместимостью 25 см3, объем доводят водой до метки  и перемешивают;  20 %- ный раствор сульфита натрия; кон­центрированная серная кислота.

Оборудование: фотоэлектроколориметр КФК-3.

Проведение анализа. В пробирку с пришлифованной пробкой вносят  по 2 см3 раствора перманганата калия и испытуемой водки. Содержимое пробирки пере­мешивают и выдерживают при комнатной температуре в течение 3 мин. Затем вносят 0,4 см3 20%-ного раствора сульфита натрия для обесцвечивания реакционной смеси и 4 см3 кон­центрированной серной кислоты. Смесь тотчас же перемешивают и пробирку помещают в водяную баню с холодной водой. После ох­лаждения смеси до комнатной температуры (около 2 мин) в пробирку вносят по 0,1 см3 раствора динатриевой соли хромотропо­вой кислоты, содержимое перемешивают и пробирку помещают в кипящую водяную баню на        5 мин.

Далее пробирку охлаждают в бане до комнатной температуры и измеряют оптическую плотность раствора при светофильт­рах с длиной световой волны 540 нм в кюветах с толщиной поглоща­ющего свет слоя 10 мм. По полученной оптической плотности с использованием градуировочного графика определяют объемную долю метанола.

Построение градуировочного графика. Для построения графика используют стандартные типовые растворы с известным содержанием метилового спирта: 0,03; 0,05 и 0,13 % в 1 дм3 безводного спирта. Фотоэлектрометрический анализ этих растворов проводят аналогично выше описанному.

По полученным результатам строят градуировочный график, от­кладывая по оси абсцисс объемную долю метилового спирта (%), а по оси ординат — оптическую плотность.

Результаты исследований по п.п. 7.1-7.6 необходимо свести в таблицу и  используя таблицу Приложения 4 сделать аргументированное заключение о качестве исследуемого образца водки.

Контрольные вопросы:

1.     По каким показателям оценивается качество водок?

2.     Дайте характеристику методам определения основных физико–химических показателей качества водок.

Раздел 4. КОНТРОЛЬ КАЧЕСТВА ВИНА И ВИНОМАТЕРИАЛОВ


Технохимический контроль качества вина включает как органолептическую оценку его качества, так и определение нормируемых физико–химических показателей, к которым относят: концентрацию спирта, сахаров, титруемых кислот, летучих кислот, диоксида серы, тяжелых металлов, приведенный экстракт и т.д. 

Технохимическому контролю подвергается вся винодельческая продукция на всех стадиях технологического процесса. Контроль состоит в определении компонентов, входящих в сусло и вино, и заключении об их влиянии на качество вина.

Лабораторная работа № 8

Определение массовой концентрации сахаров

в вине и виноматериалах

Определение сахара в вине относится к числу основных, так как содержание сахара характеризует тип вина и его вкусовые особенности. Обычно в вине и винограде определяют содержание инвертного сахара. Иногда необходимо определять глюкозу и фруктозу в отдельности, а также сахарозу.

Глюкозу, фруктозу и их смесь относят к группе восстанавливающих (редуцирующих) сахаров, обладающих восстанавливающим действием в медно-щелочном растворе.

Массовую концентрацию редуцирующих сахаров определяют прямым методом. Метод основан на восстановлении инвертным сахаром, содержащимся в анализируемом изделии, оксида меди (II) до оксида меди (I). Определенный объем раствора Фелинга установленной концентрации титруют раствором анализируемого изделия, в котором предварительно проведена инверсия сахара, до полного восстановления оксида меди (II) в оксид меди (I). Диапазон измерения концентраций сахара 0–60,0 г/100 см3.

Реакции, лежащие в основе этого определения, можно выразить схемой:

                         

Оборудование: весы аналитические, секундомер, электроплитка, баня водяная, эксикатор, колбы мерные на 50, 100, 200, 250, 1000 см3, пипетки на 5, 10, 20, 25 см3, колбы конические, бюретки 25-50 см3  с делениями 0,1 см3, цилиндры.

Реактивы: медь (II) сернокислая 5-водная, калий-натрий виннокислый 4-водный, сахароза ч. д. а., кислота соляная, гидроокись натрия, фенолфталеин, метиленовая синь (индикатор), кальций хлористый обезвоженный чистый, сахар-рафинад, вода дистиллированная.

Приготовление раствора Фелинга I: взвешивают 69,39 г перекристаллизованной сернокислой меди, помещают в колбу вместимостью 1000 см3 , добавляют 500-700 см3 дистиллированной воды, перемешивают и фильтруют.

Приготовление раствора Фелинга (II): взвешивают 346 г виннокислого калия-натрия и переносят в колбу вместимостью 1000 см3 . Затем растворяют при слабом нагревании в 400-500 см3 дистиллированной воды.

Приготовление раствора гидроокиси натрия: взвешивают 103,2 г гидроокиси натрия, растворяют в 200 см3 дистиллированной во­ды. Полученный раствор переливают в колбу с виннокислым калием-натрием. Раствор в колбе вместимостью 1000 см3 доводят до метки дистиллированной водой и фильтруют.

Приготовление раствора метиленовой сини (индикатор) с массовой долей метиленовой сини 1 %: взвешивают 1,0 г метиленовой сини, переносят в мерную колбу вместимостью 100 см3 и растворяют в 50 см3 дистиллированной воды. Раствор доводят до метки дистилли­рованной водой.

Приготовление раствора гидроокиси натрия с массовой долей 20 %: 200 г гидроокиси натрия растворяют дистиллированной водой в мерной колбе на 1000 см3.

Приготовление раствора фенолфталеина с массовой долей 1% в растворе с концентрацией спирта 70%: 1,0 г фенолфталеина растворяют в 100 см3 ректификованного спирта с концентраци­ей 70 % по объему.

Подготовка к испытанию. Титр смеси растворов Фелинга I и II устанавливают следующим образом: сахарозу ч.д.а. или сахар рафинад, измельченный в пудру, выдерживают 2-3 дня в эксика­торе над хлористым кальцием. Навеску сахарозы или сахарной пудры 2-2,5 г тщательно смывают через воронку в мерную колбу вместимостью 250 см3 дистиллированной водой в объеме 50 см3. После растворения сахарозы в колбу добавляют 3 см3 соляной кислоты (плотность 1,19 г/см3), проводят инверсию сахарозы в течении 5 мин при температуре 67-70 °С. С инвертированным раствором проводят реакцию с Фелинговой жидкостью. Реак­цию проводят три раза и берут среднее значение результатов, по которому вычисляют титр (Т) Фелинговой жидкости по формуле:

Страницы: 1, 2, 3, 4, 5, 6, 7



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.