Рефераты. Белок мяса рыбы






 В целом, указанные реакции могут привести к образованию комплексов антиген-антитело в тканях (на собственных клетках) организма-реципиента (потребителя продукта), что уже не является адаптивным процессом, но именуется – аутоаллергия [3].

2. Гипоергическая реакция со стороны организма реципиента.

Незначительное количество антител может привести к длительной свободной циркуляции а. г. донора (продукта) с последующим проявлением им своих функций.

В рассматриваемом случае, значимы следующие:

·          антигенная идентификация – может привести к формированию клонов иммунных клеток толерантных к данному антигену;

·          регуляторная – С-концы пептидной молекулы А. Г. ткани-продукта (донора) могут, по предположению автора, захватываться наружной мембраной клеток, встраиваться в нее, а в дальнейшем выполнять свою прямую функцию (антигенная идентификация организма-хозяина) и роль рецептора регуляторных влияний макроорганизма хозяина-потребителя (реципиента).

 В целом, указанные реакции могут трактоваться как повышение толерантности иммунокомпетентных тканей, что является фактором, располагающим появлению тканевых новообразований - авторская версия этиологии опухолевого роста.

Третий тип взаимных влияний носит особый характер (смысл), по-этому рассмотрен отдельно.

В организме могут образовываться антитела к идиотипическим участкам рецепторной (вариабельной) зоны выработанных антител, в том числе и к данному антигену [28]. Антидетерминанты антител, уже второго порядка, являются в определенном смысле копией белка-антигена - этого требует логическая последовательность комплементарных структур: замок (1) – ключ (2), - она продолжается структурой (3), которая для выполнения принципа комплементарности должна быть, идентичной первому элементу, то есть (1) – замку, из этого следует, что структура (3) является, в понятном смысле, копией структуры (1), то есть продолжает цепочку элемент - замок¢(3).

Таким образом, антиген может стимулировать синтез АМК последовательностей как в виде своих «антикопий» ( Fab- участков Ig G «первого поколения»), так и в виде «копий» (Fab- участков Ig G «второго поколения» - замок¢(3)). Следует отметить, что иммуноглобулины после естественного разрушения могут «высвободить» АМК последовательность идентичную белку-антигену (его «копию»), а она , свою очередь, с определенной вероятностью, может выполнить свою специфическую функцию (антигенная идентификация ткани-носителя, регуляторная).

3. 5. 4. Способы снижения антигенной агрессивности пептидов пищи.

Теперь следует определить способы снижения вероятности дезорганизации физиологических процессов нашего организма чужеродными пептидами пищи. Этого можно добиться путем снижения количества антигенов - «агрессоров» находящихся в сосудистом русле. Путями регуляции указанного процесса являются:

1)       уменьшение количества поступающего  экзогенного протеина (п.3.4.1.);

2)       пищевой белок должен быть в состоянии, способствующем max степени гидролиза превичной структуры (п.3.3);

3)       условия переваривания должны иметь max пептидгидролизующую способность (механический, химический этапы пищеварения) (п.3.4.1.);

4)       min проницаемость энтерогематического барьера для негидролизированных молекул пептидов – отсутствие патологии ЖКТ (механических дефектов слизистой, воспалений);

5)       качественная замена белка пищи на таковой, который обладает более выраженным свойством инактивируемости.

Пункт (5) требует отдельного описания.

 Если высшие позвоночные между собой антигенно близки (человек, свинья, бык), то, в известной мере, эволюционные (таксономические) антиподы - низшие и высшие позвоночные должны быть антигенно разнородны, именно, рыба - низшее позвоночное, и человек - высшее, являются, в этом смысле, противоположностями, а значит и противоположностями, если их рассматривать в аспекте антигенной идентичности. Это подтверждает работа, где указывается более низкая в сравнении с таковой у млекопитающих ступень (седьмой уровень из десяти) развития иммунной системы рыб, что обязательно подразумеавает степень антигенной дифференцированности (уровень тканевой видоспецифичности) [30]. По сравнению с млекопитающими, антигенный «спектр» рыб менее развит, а значит и менее «комплементарен» к антигенному «спектру» человека, но он достаточно сложен (седьмой уровень), чтобы считаться высокоспецифичным (более, чем антигенный спектр беспозвоночных, напр., моллюсков). Кроме того, свидетельством хорошей антигенной «видимости» белков рыбы является ее отнесение к разряду высокоаллергогенных продуктов, т.е. организм человека в форме гиперреакции нейтрализует такие «явные» для него антигены. (В случае противоположных свойств - гипореакция организма, которая сопровождается увеличением продолжительности «жизни» антигена.) Однако, этот факт не может восприниматься как снижающий полезность рыбы, ввиду того, что аллергическая реакция на пищевой продукт не является физиологической нормой, кроме того есть много факторов, способствующих развитию аллергии, помимо свойств белка [12; 14]. Даже при наличии аллергии к определенному виду рыбы, человек может хорошо переносить другие виды рыб [12; 14].

Таким образом, большинство людей не склонных к аллергическим реакциям на рыбу могут употреблять рыбные блюда, чтобы использовать полезное качество ее антигенного спектра  - быть хорошо «видимым», нейтрализуемой нашей иммунной системой.

После проведения практической иллюстрации взаимодействия «белок пищи – организм» на уровне эндокринной и иммунной систем достаточно важно сделать теоретическую «карту» такого «путешествия чужеземца к замку, где ждут гостей». Итак, резюме.

3.6. Физиологические барьеры препятствующие и свойства молекул способствующие реализации ими  тканевых эффектов.

Виды физиологических барьеров препятствующих, а также свойства биологически активных молекул способствующие реализации ими  тканевых эффектов.

Виды физиологического барьеров

Качества совокупности молекул белков, поступающих организм, способствующие реализации их тканевых эффектов

1. Ферментативное расщепление в ЖКТ.

1.        Нативность (III, IV структура).

2.        Количество большее, чем может быть ферментировано до всасывания.

3.        Активность фрагментов молекулы.

2. Энтерогематический барьер.

1.        Способность подвергаться пиноцитозу.

      менее 200 нм.

2.        Количество, способное достичь участков микротравм слизистой кишечника.

3.        «Антигенная невидимость» для Ig A слизистой кишечника.

3.Иммунные реакции крови.

1.        Биологическая активность молекулы при неиммуногенном количестве АМК (<8) в пептидной цепочке.

2.        Структурная идентичность по отношению к циркулирующим молекулам организма хозяина.

3.        Высокая способность (скорость) реализации специфической функции.

4.        Количество, способное реализовать биологический эффект молекулы без иммуностимулляции.

4. Специфичность рецепторов.

1.        Структурная идентичность в сравнении с молекулами   организма хозяина.

2.        Активность незначительно отличающейся молекулы «гостя» (способность к эффективным конформационным перестройкам).

3.        Способность по-фрагментарно присоединяться к рецептору, с последующим воспроизведением эффекта.


5. Гистогематический барьер.

1.        молекулы менее, чем поры гистогематического барьера (напр.: ГЭБ 1,5 нм).

2.        Молекула обладает липофильностью, полярностью и другими свойствами, повышающими ее способность проникать сквозь гистогематические барьеры.

3.        Æ молекулы менее, чем поры безбарьерных зон организма: яичники, промежуточный мозг и др., - для зон без ГЭБ это значение < 70 мкм.

4.        Период полураспада, обеспечивающий сохранность молекулы до момента снижения барьерной функции соответствующих тканевых структур.

5.        Способность молекулы вызывать биологический эффект, воздействуя фрагментарно, в менее «заметном» для гистогематического барьера состоянии (размере).



Теперь, когда определенные параметры (количество и иммунные качества) белка заданы, организм будет сохранен в состоянии гармонии с внешней средой, а это - физиологично. Выше сказанное подтверждает пищевую полезность белка рыбы, но главный критерий - биологическая ценность (аминокислотный состав) будет рассмотрен ниже [5].

3.7. Биологическая ценность протеина рыбы.

                Самостоятельное оценивание было проведено с помощью таблицы 1, которая составлена по данным [7].

Таблица 1.

Ценность продуктов как источников НАМК.


Наименования продуктов

НАМК

треска

говядина

коровье молоко

женское молоко

рис

пшеница


пнм

k

пнм

k

пнм

k

пнм

k

пнм

k

пнм

k

вал

VI

3

V

2

I

6

III

4

II

5

VI

1

лей

VI

3

V

2

I

6

II

5

III

4

VI

1

иле

II

5

I

6

III

4

IV

3

V

2

VI

1

тре

I

6

II

5

III

4

IV

3

V

2

VI

1

лиз

I

6

II

5

III

4

IV

3

V

2

VI

1

мет

I

6

IV

3

VI

1

III

4

V

2

II

5

фен

II

5

V

2

I

6

VI

1

III

4

IV

3

трп

V

2

VI

1

III

4

I

6

II

5

IV

3

Ц

36

26

34

29

26

16


Где:   НАМК - незаменимые аминокислоты;

ПНМ - порядковый номер места в ряду убывания по содержанию НАМК в г/100г продукта, получено опираясь на данные [8] ;

k - коэффициент, имеющий значение соответственно ПНМ:

kI = 6, kII = 5 ... kVI = 1;

Ц - ценность продуктов как источника НАМК, с позиции, чем больше содержание, тем больше ценность белка, получено для каждого продукта как сумма k для каждой НАМК. (Например: Цговядины=2+2+6+5+5+3+2+1=26).

Исходя из полученных результатов, треска наиболее богата незаменимыми кислотами. Самая низкая величина показателя Ц у пшеницы - это определяет их взаимодополняемость [5; 7]. Но кроме аминокислотного состава указанный факт обуславливается единообразием (близкий ферментный спектр, рН, время пребывания в желудке) пищеварения вышеуказанных продуктов, иначе сказать нагрузка на ЖКТ будет одновекторной, сбалансированной, физиологичной  [31]. Таким образом, сочетание рыбных и блюд из пшеницы будут наиболее полезны.

Далее, было проведено оценивание аминокислотного состава белка рыбы по методу скора (таблица 3), суть метода заключается в сравнении исследуемого продукта относительно идеального белка [5]. Расчеты проводились на основании данных таблицы 2 ; для большей объективности оценивания была создана «модель» (рыбы), показатели содержания АМК, которой представляют собой средне арифметическое от цифр содержания АМК у действительных видов рыб, приведенных в таблицах 2, 3; для сравнения приведена оценка свинины (мышечная ткань); для наглядности сравнения построена диаграмма содержания НАМК в оцениваемых продуктах.  (рисунок 1) [7]. Сумма отклонений скора - показатель, характеризующий степень «удаленности» исследуемого белка от идеального, он получен суммированием разностей скора каждой АМК от 100 процентов (линь: иле  127-100=27; лей 109-100=9; и т. д. ; вал  106-100=6; сумма отклонений скора = 27+9+...6=139); показатель просчитан для каждого продукта (таблица 3).

Таблица 2.

Содержание АМК в 1 г. белка, мг

АМК

Наименование продуктов

Идеаль­-


Линь

Карп

Щука

Треска

Модель

Свинина

ный белок

иле

51,0

50,0

51,0

43,8

48,9

47,5

40

лей

76,0

112,5

76,0

81,3

86,4

75,4

70

лиз

88,0

118,8

88,0

93,8

97,1

80,0

55

мет+цис

43,0

40,6

43,0

43,8

42,6

37,0

35

фен+тир

64,0

81,3

64,0

87,5

74,2

74,0

60

трп

10,0

11,3

10,0

13,1

11,1

13,4

10

тре

43,0

56,3

43,0

56,3

49,6

47,1

40

вал

53,0

68,8

53,0

56,3

57,8

55,6

50

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.