Рефераты. Анализ и моделирование методов когерентной оптики в медицине и биологии






В другом методе когерентной оптической обработки сигналов, обрабатываемые сигналы не записываются оптимальным образом специально для оптической обработки, а регистрируются с экрана осциллографа или на ленте самописца. При определенных довольно обычных условиях требуемый спектр мощности таких сигналов можно получить как одно измерение Фурье-преобразования двумерной записи входного сигнала [1.38].

Преимуществом любого из этих оптических методов обработки сигналов по отношению к уже достаточно простому методу преобразования аналогового сигнала в цифровую форму и последующего выполнения быстрого преобразования Фурье на ЭВМ должна остаться скорость обработки (отображение результатов вычисления можно получить в реальном времени, если данные вводятся непрерывно с помощью соответствующего входного устройства, способного работать в когерентном свете [1.36]).



4. Представление изображений


Окончательным «потребителем» биомедицинских изображений является биолог или медик. Эффективное использование когерентных оптических методов представления изображений может сделать изображение значительно более легко понимаемым для исследователей. Никакой новой информации при этом не производится, однако имеющаяся информация может быть представлена по-новому, в более удобной для исследователя форме.


4.1 Псевдопараллакс


Мы уже отмечали, что формирование изображения методом кодирования апертуры и акустическая голография позволяют последовательно фокусироваться на различные по глубине плоскости. Если мы зарегистрируем серию таких изображений с одним и тем же коэффициентом поперечного увеличения на прозрачном носителе и расположим их друг за другом на соответствующей глубине, то сможем смоделировать реальный трехмерный объект. Физические транспаранты имеют, однако, некоторые существенные недостатки при их использовании для этой пели. Во-первых, ближние транспаранты мешают наблюдать более удаленные. Во-вторых, неудобно непосредственно производить измерения расстояний между частями объекта. В-третьих, набор транспарантов представляет собой сложный объект, неудобный для хранения, транспортировки или копирования. С другой стороны, мультиплицирование изображений диффузно освещенных транспарантов на соответствующих расстояниях от голограммы обеспечивает одновременное решение всех трех только что отмеченных проблем. Рассмотрим их подробнее по порядку.

Во-первых, благодаря тому, что каждая плоскость регистрируется в отсутствие других и с одинаковой для всех дифракционной эффективностью, каждая плоскость наблюдается независимо от других па соответствующей глубине. Таким образом, в наблюдаемых изображениях дальние плоскости четко видны «сквозь» ближние. Во-вторых, поскольку изображение формируется в воздухе, а не на физическом транспаранте или экране, мы можем поместить линейку внутрь него при измерении расстояний. В-третьих, так как голограмма является легко копируемым плоским объектом, то хранение, транспортировка и копирование оказываются очень удобными.


Рис. 4.1. Несколько фотографий голографлчески синтезированного трехмерного изображения, полученного из двумерных ультразвуковых сканограмм типа В при разных глубинах


Несколько другим представляется отображение в трех измерениях ряда двумерных «срезов» (вместо различных фокальных плоскостей, которые обычно содержат случайные помехи, обусловленные дефокусировкой изображений в других плоскостях). Ультразвуковое сканирование типа В позволяет получить такие двумерные изображения, так же как и проективная томография. Таким образом, цель псевдопараллакса состоит в предоставлении возможности наблюдателю получать основные сведения о трехмерных в действительности соотношениях из серии двумерных изображений. Эти концепции были предложены Редманем [1.39] и затем развиты другими исследователями [1.40, 41]. На рис. 4.1. приведен ряд различных изображений одного и того же объекта, полученных с одной голограммы. Отдельные плоскости представляют собой расположенные на одинаковых расстояниях и параллельно друг другу «срезы» (ультразвуковое сканирование типа В) через оба глаза. Темное пятно выше одного глаза указывает на наличие рака. С помощью псевдопараллакснческих голограмм можно установить размеры, форму и местоположение раковой опухоли.

Имеется несколько схем мультиплексирования для получения псевдопараллакса. Наибольшего внимания заслуживают три: схема, реализующая метод многократных экспозиций, схема с пространственно-разделенным мультиплексированием [1.42] и схема голографического кино [1.43]. Схема с использованием многократных экспозиций (в которой между экспозициями изменяют только транспарант объекта и его местоположение) является самым простым методом мультиплексирования, а также и самым лучшим, если нужно использовать только несколько плоскостей по глубине.

Недостаток метода мультиплексирования па основе многократных экспозиций состоит в том, что дифракционная эффективность каждой из N голограмм приблизительно равна 1/JV2 от дифракционной эффективности голограммы при N=1. Сама по себе дифракционная эффективность имеет небольшое значение. Мы всегда можем использовать более мощный лазер при восстановлении изображений с голограммы. К сожалению, однако, оптический шум фона также пропорционален мощности лазера и по существу не зависит от N. Следовательно, отношение сигнал/фон изменяется как 1/N2. Лучшее что мы можем в принципе сделать — это достичь зависимости вида 1/N. Таким образом, в лучшем случае мы можем поделить яркость поровну. Имеются два пути сделать это, причем оба связаны с изготовлением N отдельных голограмм. Первый предполагает одновременное восстановление изображений со всех голограмм (метод пространственно-разделенного мультиплексирования). Другой основан на последовательном во времени восстановлении голографических изображений (метод голографического кино). В обоих способах наблюдатель думает, что видит стационарное изображение с большим числом планов по глубине. В методе пространственно-разделенного мультиплексирования это достигается путем распределения каждой отдельной голограммы на многих малых участках поверхности фотопластинки. Эти малые участки невидимы в плоскости голограммы и не создают помех в отбеленных голограммах. Помещая перед голограммой маску, использованную при записи отдельного среза по глубине, мы можем наблюдать соответствующие изображения отдельно друг от друга.

Метод голографического кино может быть использован не только для воспроизведения движения, но также и для формирования неподвижной картины со многими планами по глубине. Идея состоит в отображении каждого двумерного изображения, соответствующего определенной глубине, не одновременно, как в рассмотренном выше методе, а последовательно. Если все N изображений показывают, по крайней мере, один раз за время интегрирования глаза, то наблюдатель будет воспринимать их существующими одновременно (и, следовательно, непрерывно). Обычные методы голографического кино потерпели неудачу по очевидной причине: перемещение голограмм должно быть слишком быстрым. Чтобы сменить перед зрителем 10 голограмм размером 10 см за время 1/20 с, необходима скорость протяжки, равная 2000 см*с-1. Однако решение этой проблемы может быть найдено. Продолжая рассматривать предыдущий пример, мы можем записать десять голограмм в виде полос шириной 1 мм (на каждой по двумерному изображению) и скомпоновать затем их в один кадр-полосу шириной 1 см. После этого мы могли бы скопировать этот кадр-полосу необходимое число раз, чтобы сделать непрерывную петлю из голографической пленки. При непрерывном движении петли в считывающем пучке света будут восстанавливаться очень удовлетворительные трехмерные изображения, в которых, однако, вертикальный параллакс будет потерян [1.43]. Требуемая скорость протяжки пленки теперь равна 20 см*с-1, т. е. остается высокой, но вполне реализуемой.


4.2 Другие методы трехмерного отображения


Голография широко используется для трехмерного отображения серии двумерных изображений, полученных обычным образом.

Излагаемая тема требует детального анализа этого метода, однако в нашем распоряжении имеется несколько коротких обзоров [1.44. 45]. Редмен снова был среди пионеров, решавших эту проблему как для изображений, получаемых с помощью электронного микроскопа [1.46], так и для рентгеновских изображений [1.47]. Вместо того чтобы повторять здесь указанные обзоры, мы рассмотрим достаточно подробно один метод трехмерного отображения двумерных изображений. Предшествующие достижения подробно описаны в указанных обзорах.

Метод трехмерного отображения, который мы хотим исследовать, пригоден, в частности, для отображения всего тела и, следовательно, представляет интерес для биологов, медиков, ортопедов, нейрологов и т.д.

Упомянутый нами метод основан на использовании мультиплексных цилиндрических голограмм. Голограмма записывается в два полностью автоматизированных этапа по схеме, которая была применена Кроссом [1.48]. На первом этапе получают серию фотографий объекта с разных ракурсов таким образом, что объект находится более или менее точно в центре воображаемого круга, с границ которого и производится фотографирование. При этом либо объект помещается на вращающемся столе и (поворачивается перед неподвижным наблюдателем, либо вокруг объекта перемещается фотоаппарат. Угловой шаг между фотографиями должен быть небольшим по причинам, которые поясним позднее. Для многих целей достаточно иметь одну фотографию на каждый градус изменения ракурса. Оказывается, что для многих биологических применений требование к качеству изображения может быть весьма умеренным, так что для реализации имеющейся возможности может быть использован фиксированный круг, образованный, например, 360 равномерно распределенными недорогими фотоаппаратами. Второй этап состоит в мультиплицировании полученных фотографий на цилиндрической голограмме. Обычно вытянутая по вертикали голограмма — полоска шириной в 1° освещается лазерным светом, прошедшим через рассеиватель (если используется одно фотографическое разделение). На некотором расстоянии вдали находится плоскость голограммы. Плоскость голограммы маскируется вертикальной щелью шириной 2рr/N, где r — радиус цилиндрической голограммы, которая будет использоваться (~25 см), a N— число мультиплицируемых изображений (360 в использованном нами примере). Опорный пучок формируется точечным источником, расположенным выше транспаранта с изображением объекта. В результате N голограмм оказываются последовательно записанными на ленте пленки длиной 2рr. После проявления (и обычно отбеливания) голограмма сворачивается в цилиндр, чтобы получить цилиндрическую голограмму. Для наблюдения изображения мы освещаем голограмму сверху с помощью точечного источника, а чтобы видеть объект под различными ракурсами, мы либо обходим вокруг голограммы, либо вращаем голограмму. Наблюдаемый объект, который кажется совершенно реальным и трехмерным, оказывается как бы плавающим в центре цилиндра. Кросс [1.48] был также первым, кто предложил интересное и полезное изменение этой схемы. Кроме изменения ракурса па объект между фотографиями он изменяет также и сам объект. Таким образом, стало возможным наблюдать такие действия, как улыбка, прощальный жест рукой, воздушный поцелуй и т. д., если они были сфотографированы. Движение изображения видно тогда, когда вращается цилиндр или когда наблюдатель вращается вокруг него. Можно снимать фильм непрерывно и таким образом зарегистрировать события произвольной продолжительности, а затем их воспроизвести в виде трехмерного изображения.




5. Извлечение данных об объекте


Когерентная оптика может быть использована для извлечения данных о биологических объектах или для облегчения восприятия некоторых характерных черт объекта. При этом она выполняет функцию, которая не является просто формированием изображения и может даже совсем не включать его.


5.1 Измерение геометрических величин


Измерение биологических объектов в трех измерениях стало возможным совсем недавно по двум основным причинам. Во-первых, вплоть до настоящего времени задача обработки биологических данных превосходила возможности большинства ЭВМ и систем памяти. Во-вторых, сами методы измерений были очень несовершенными. Измерения с помощью линеек не обеспечивали адекватного описания сложных объектов. Электронная вычислительная техника разрешила первую проблему, в то время как когерентная оптика решает вторую.

Для очень точных измерений геометрических характеристик объекта с одного ракурса может быть использован метод Гара с сотр. [1.11], описанный ранее как точный оптический метод измерений. Упатниекс с сотр. [1.49] предложили метод для исследования объектов со многих ракурсов, который является обратным только что описанному методу синтеза цилиндрических голограмм Кросса [1.48]. Упатниекс использует ставший теперь обычным метод записи цилиндрических голограмм непосредственно в когерентном свете [1.50, 51]. При записи голограммы живого объекта необходимо использовать короткий импульс лазерного света, достаточный для того, чтобы «заморозить» движение объекта в пределах долей длины волны света с длиной когерентности, достаточной для записи всего объекта по глубине, и с интенсивностью, достаточной для экспонирования низкочувствительных голографических эмульсий. В настоящее время такие лазеры имеются в продаже [1.52]. В своем методе Упатниекс сначала «развертывает» цилиндр и затем одновременно освещает срез, чтобы получить точные двумерные изображения с любого ракурса, который он выбирает.

Классическим оптическим методом извлечения трехмерных данных об объекте является стереоскопический метод. Было затрачено много усилий на то, чтобы использовать голографию для решения задачи извлечения количественных данных из стереопар. Эти исследования продемонстрировали большую простоту и надежность голографии по сравнению с классическими методами, а также и новые возможности, такую, например, как наложение трехмерных решеток на стереоизображение.


5.2 Глубинные контуры


Как для микроскопических, так и для макроскопических объектов удобно иметь возможность видеть контуры, но глубине. Эти контуры выполняют несколько полезных функций. Во-первых, они представляют собой полезное и легкое для понимания представление третьего измерения на двумерных изображениях. Во-вторых, они показывают, где глубина изменяется быстрее всего. В-третьих, они позволяют производить количественные измерения глубины.

Когерентная оптика позволяет получать глубинные контуры различным образом, однако наиболее важными методами являются два — метод двухэкспозициоиной голографической интерферометрии и метод проектирования полос. Голографический метод формирования контуров с помощью двух экспозиций состоит в записи двух голограмм одного объекта на одной и той же фотопластинке, но при слегка измененных параметрах (длины полны, показателя преломления, промежуточной среды и т. д.) и последующего восстановления изображения на одной длине волны. Метод проектирования полос заключается в освещении объекта пространственно-неоднородным изображением. Метод пригоден для работы в реальном времени, поскольку основан на использовании специальной схемы освещения.


5.3 Обнаружение суммарных перемещений


Когерентная оптика предлагает несколько методов для записи и изучения перемещений объектов в объеме.

Голография обеспечивает легкий способ записи трехмерных траекторий микроскопических частиц или организмов, перемещающихся в некоторой среде [1.55, 56]. Усредненная во времени голограмма по существу является голограммой траектории (орбиты) источника.

В случае протяженных объектов движение приводит к уменьшению контраста интерференционных полос па усредненной во времени голограмме, в результате чего неподвижные части голографируемой сцепы при восстановлении создают более яркие изображения, чем движущиеся. Фелеппа [1.57] показал на примере изменения контраста в изображении плесневого грибка, вызванного его движением, что имеет место непрерывное изменение контраста от единицы (яркое изображение) для неподвижных частей до нуля (темное изображение) для частей, значительно переместившихся за время экспозиции.

Другим подходом к изучению значительных перемещений объекта является метод вычитания исследуемой сцены (живой или зарегистрированной па некотором носителе) из изображения этой же сцены, которое было получено раньше. Конечно, когерентный свет основан на вычитании (фазовых эффектах), так что он является идеальным для использования в этом методе. К счастью, превосходный и исчерпывающий обзор (библиография насчитывает 54 ссылки) интересующих нас методов вычитания сделал недавно Эберсоль [1.58], и, следовательно, более короткий обзор здесь был бы недопустим.

Другим способом обнаружения суммарных перемещений, в котором используется когерентный свет, является обычная шлирен-система Роундса с сотр. [1.59]. С помощью щелевой маски пучку света придается форма щели, затем он направляется в исследуемую камеру и далее фокусируется на другой маске, блокирующей прохождение спета на выход. При миграции клеток в части камеры, через которую проходит свет, происходит рассеяние света за пределы блокирующей маски, и он проходит на детектор. Интенсивность рассеянного света пропорциональна плотности клеток в освещаемой области камеры. Для измерения показателя миграции клеток использовался непрерывный контроль миграции диплоидного фибробласта. Имеется много модификаций этого простого метода.- Величина миграции может быть измерена путем контроля плотности клеток на различных расстояниях от края полностью сливающихся культур. В другой модификации метода свет, рассеиваемый за пределы блокирующей маски, используется для фотографирования частиц, перемещающихся в колбе. Скорость перемещения частиц может быть определена по длине полоски, соответствующей использованному времени экспозиции. Этот метод можно использовать для изучения аномальных потоков в кровеносных сосудах (турбулентности, точки покоя и т. д.) и т. п.


5.4 Обнаружение малых перемещений


Когерентная оптика обеспечивает биомедицинские науки совершенно новыми и мощными методами для наблюдения за малыми изменениями исследуемых объектов. Отметим, что изменения могут происходить медленно (при наблюдении за действительным ростом грибов) или быстро (с интервалом в несколько миллисекунд при наблюдении за изменениями грудной клетки в процессе дыхания). Интересующий пас диапазон величин перемещений лежит от долей микрона до нескольких миллиметров.

Голографическая интерферометрия и спекл-интерферометрия являются двумя широкими областями, используемыми для обнаружения перемещений методами когерентной оптики. Кратко рассмотрим каждую из них, чтобы иметь возможность сравнивать их между собой. Голографическая интерферометрия основывается на достоинстве голографии (т. е. возможности регистрировать детали объекта с оптической точностью, обычно соизмеримой с длиной волны света), а спекл-иитерферометрия использует основной недостаток голографии — спекл-эффект.

Голографическая интерферометрия является быстро развивающейся областью, достижения которой обобщены не только Абрамсоном, но и рассмотрены в недавней статье [1.60]. Поэтому здесь будет достаточно отметить некоторые исключительные преимущества голографической интерферометрии по сравнению с классической интерферометрией применительно к биомедицинским объектам.

Во-первых, в то время как классическая интерферометрия может быть использована только для исследования некоторых тонких и прозрачных объектов, голографическая интерферометрия применима для более широкого класса объектов, например для людей.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.