Рефераты. Исследование особенностей граничного трения ротационным вискозиметром






Отдельно следует отметить, что при переходе от диэлектрических подложек к металлическим равновесная толщина ЭЖК фаз значительно возрастает, что, по-видимому, связано с возрастанием в этом случае запаздывающих Ван-дер-Вальсовых сил. Укажем также, что в этих моделях игнорируется пространственная неоднородность ЭЖК-фаз, отмеченная в спектральных исследованиях.

В рассмотренных моделях не говорилось о реологических свойствах ЭЖК. Поэтому рассмотрим эти свойства на примере исследования тонких неоднородных жидких прослоек на капиллярном вискозиметре.


1.2 Капиллярный вискозиметр для исследования тонких неоднородных жидких прослоек


В статье "Капиллярный вискозиметр для исследования тонких неоднородных жидких прослоек" Алтоиз Б.А., Поповский Ю.М., описана конструкция капиллярного вискозиметра для исследования реологических свойств тонких (20 ¸ 50 мкм) прослоек жидкости. Опыты с рядом органических немезогенных жидкостей свидетельствуют о пространственной неоднородности таких прослоек – наличия в них пристенного структурированного слоя, толщина которого с течением уменьшается. В рамках модели «срезаемого течением жесткого слоя» проведена оценка этой толщины.

Из оптических исследований прослоек ряда немезогенных органических жидкостей алифатического ряда [1,2] установлено, что на металлической подложке эти жидкости образуют структурированные эпитропные жидкокристаллические (ЭЖК) слои, толщина которых может достигать ds ~5 ¸ 10 мкм. Вследствие анизотропии этих слоев их вязкость должна отличаться от вязкости объемной жидкости. Очевидно, что реологические исследования ЭЖК слоев весьма актуальны для решения теоретических и прикладных задач, связанных с эксплуатацией узлов трения.

Авторами в ранних исследованиях слоев, образованных на диэлектрических подложках, неоднократно отмечалось возрастание вязкости, однако, в этих работах малые толщины слоев (ds ~ 0,01 ¸ 0,1 мкм) затрудняли проведение вискозиметрических измерений и заставляли исследователей применять изощренную экспериментальную технику [3] или ограничиваться косвенной оценкой вязкости пристенных слоев [4]. Для изучения вязкости ЭЖК слоев, образованных на металлических поверхностях, вследствие их больших толщин можно при соответствующей модификации использовать более грубые традиционные методики, принятые в реологии.

1.2.1 Устройство капиллярного вискозиметра. С этой целью нами был сконструирован капиллярный вискозиметр со щелевым зазором переменной толщины, схема которого показана на рис.1.


Рис.1. Схема капиллярного вискозиметра для исследования реологических свойств тонких прослоек жидкости


Щелевой зазор создавался между двумя плоско полированными стальными пластинами 1, которые с помощью микрометрического устройства 2 могли перемещаться и фиксироваться на заданном расстоянии. Полированные, обработанные по 14-му классу точности, стальные пластины закреплялись на латунных основаниях 3, в которых размещались установочные болты 4, позволявшие в случае необходимости устранять клиновидность щелевого зазора. Герметизация зазора осуществлялась боковыми и верхними резиновыми прокладками 5, покрытыми тонкой тефлоновой пленкой.


Рис.2.Схема создания перепада давлений в капиллярном вискозиметре


Для определения объема жидкости, протекающей через щелевой зазор, использовалась (рис.2) калиброванная измерительная трубка 1, высота столба жидкости в которой фиксировалась катетометром К с точностью 0,01 мм. Для создания перепада давлений вискозиметр через балластную трубку 2 подсоединялся к ресиверу 3 с манометрическим устройством 4. При измерении давлений P ~ 102 ¸ 104 Па использовался водяной, а для больших давлений (до 20 КП) – образцовый механический манометр. Для уменьшения объема пленки жидкости, остающейся за опускающимся мениском, диаметры измерительной трубки выбирались небольшими (~ 1 мм). Поверхности пластин, образующих зазор, и другие металлические детали, входящие в контакт с исследуемой жидкостью, перед сборкой вискозиметра для очистки от органических загрязнений промывались растворителем и просушивались.

После установки заданной величины зазора D он герметизировался. Изотермичность и малость градиентов температур (DT/l £50 K/м) контролировались системой термопар, а постоянство температуры ( £ 0,5 К) в рабочей ячейке обеспечивалось воздушным термостатом. Для устранения ошибки, связанной с возможным шунтированием потока жидкости, ее протечкой через неплотности резиновых прокладок, предварительно проводился контрольный опыт, при котором через вискозиметр прокачивался воздух и определялась объемная скорость его протекания. Рассчитанные в таких опытах значения вязкости воздуха сравнивались с табличными данными, и в дальнейших измерениях вводилась соответствующая поправка. При зазорах D ³ 50 мкм поправка не превышала нескольких процентов, а при меньших зазорах становилась значительной.

После заполнения вискозиметра исследуемой жидкостью в ресивере создавалось разрежение, и при различных фиксированных перепадах давлений DP в диапазоне DP = 102 ¸ 104 Па проводились измерения интервала времени t протекания через прибор заданного объема жидкости Q. Разброс отсчетов времени в пределах серии измерений был ~ 1%, однако, воспроизводимость последовательных серий достигала 10%, что связано, по-видимому, с возможным попаданием в зазор отдельных частиц твердых примесей. Расход жидкости в единицу времени определял экспериментальную объемную скорость течения qэ = Q/t (м3/с), где Q – объем протекшей через капиллярный зазор жидкости за время t, и среднюю (по сечению зазора S) линейную скорость <vэ> = qэ /S. Режимы течения во всех проведенных опытах были ламинарными (Re £ 1). «Объемная» вязкость исследовавшихся жидкостей измерялась стандартными вискозиметрами и сравнивалась с литературными данными.

1.2.2 Экспериментальные результаты. В работе авторами были проведены измерения вязкости тонких (D = 30 ¸ 50 мкм) прослоек индивидуальных органических жидкостей и углеводородных технических смесей, образованных между металлическими пластинами. В случае ламинарного потока средняя скорость <vп> течения ньютоновской жидкости через щелевой зазор толщиной D (рис.3) определяется формулой:

,                                                                               (2.1)

где p=DP/l (Па/м) – градиент давления по длине зазора l, а m0 (Па·с) – величина коэффициента вязкости жидкости.

Существование на боковых поверхностях щелевого зазора пристенного слоя с иными реологическими характеристиками, чем объемная жидкость, было установлено в опытах с описанным вискозиметром при анализе характера возрастания скорости течения жидкости <> с повышением перепада давления, и сравнением таких зависимостей с теоретическими, рассчитываемыми по (1). Для исследуемых жидкостей при зазорах заведомо больших чем 2ds, т.е. в отсутствие перекрытия пристенных слоев, в области малых перепадов давления наблюдается уменьшение вязкости с ростом давления и поэтому нелинейное возрастание скорости течения жидкости, а при давлениях (0.5 ¸ 1) 104 Па вязкость становится равной вязкости объемной жидкости.


Рис.3. Геометрия щелевого зазора вискозиметра и схема течения в нем жидкости с приповерхностным «жестким» слоем


Как пример авторы приведят результаты (рис.4) опытов с технической углеводородной жидкостью МРХ-30. Для тонких (D ~ 30 ¸ 40 мкм) прослоек этого масла при



Рис.4. Зависимость отношения <vэ> / p – относительной (по отношению к градиенту давления p) экспериментальной средней скорости течения масла МРХ-30 через щелевые зазоры вискозиметра от градиента давления p. Величина зазоров: D1 = 39,7 мкм (·), D2 = 35 мкм (О) и D3 = 30 мкм ( ). Т = 294 К. Сплошные линии – аппроксимация зависимостью (2)


небольшой скорости течения зависимость (1) не выполняется – величина <vэ> возрастает не пропорционально градиенту давления p. Экспериментальные результаты трех серий вискозиметрических опытов (при температуре Т = 294 К) с истечением этой жидкости через зазоры трех фиксированных толщин (D1 = 39,7 мкм, D2 = 35 мкм и D3 = 30 мкм) представлены на рис.4 в виде зависимости относительной (по отношению к градиенту давления p) скорости течения – величины (<vэ> /p, м2/Па×с) от p. Экспериментальные данные аппроксимированы (сплошная линия) функцией:

,                                                             (2)

где u¥, u0 и p¥ – параметры аппроксимирующей зависимости (приведены в табл.1).

Таблица.1

Параметры аппроксимации (2) экспериментальной зависимости относительной (по отношению к градиенту давления p) средней скорости <vэ> /p = f(p) течения масла МРХ-30 от градиента давления p в щелевых зазорах вискозиметра трех фиксированных толщин D. Т = 294 К.


Толщина

зазора

D, мкм

Параметры аппроксимации

u¥,×10–9,

м2/Па×с

u0 ×10–9,

м2/Па×с

p¥ ×105,

Па/м

39,7

13,4

4,41

1,81

35

10,4

3,74

2,02

31

8,3

3,24

4,04


Из рис.4 видно, что в области малых градиентов давления p < 0,5 МПа/м величина отношения <vэ>/p с увеличением давления растет и лишь при градиентах (p > 0,5 МПа/м) c повышением давления практически не изменяется. При этом экспериментальная скорость истечения жидкости <vэ> меньше расчетной <vп>, а при больших перепадах давления становится равной ей.


1.2.3 Обсуждение результатов и модель «жесткого, срезаемого» пристенного слоя.

 Наблюдаемый характер зависимости <vэ>/p = f(p) объясняется существованием в прослойке пристенных слоев толщиной 2ds. Их наличие приводит к тому, что реальное проходное сечение зазора s, по которому протекает жидкость, меньше, чем геометрическое S=bD (рис.3). С ростом приложенного давления и соответственно скорости течения равновесная толщина слоя на каждой из подложек уменьшается и, начиная с какого–то значительного перепада давления, проходное сечение зазора совпадает с геометрическим.

Поэтому для расчета параметров слоя рассмотрим его простейшую реологическую модель: на поверхностях обеих пластин, ограничивающих зазор, существует неподвижный (гидродинамически «жесткий») слой, периферийная часть которого “срезается” течением (рис.3). При постепенном увеличении скорости течения (за счет повышения перепада давления DP) толщина пристенного слоя убывает вплоть до нуля.

В такой модели, в соответствии с (1), рассматриваемая величина отношения <vэ>/p может быть представлена в виде:

,                                                                               (3)

что позволяет по полученным экспериментальным зависимостям <vэ>/p = f(p) рассчитать как начальную толщину слоя d0s (ее значение при p = 0), так и ее текущее значение – величину ds в функции градиента давления или возрастающей с ним скорости течения жидкости <vэ>.

Рассчитанные таким образом значения толщины ds «жесткого, срезаемого» слоя  в зависимости от средней линейной скорости <vэ> течения жидкости в данном зазоре для каждой из трех серий экспериментов приведены на рис.5. В принятой модели пристенного слоя для количественного описания явления его «срезания» течением зависимость ds = f(<vэ>) аппроксимировалась функцией:

.                                                                          (4)

Здесь d0s (мкм) – толщина пристенного слоя при отсутствии течения, (<vэ>) – средняя (по сечению зазора) линейная скорость течения жидкости, v0 (мм/с) – параметр, характеризующий «жесткость» слоя, его способность к «срезанию» течением. Значения параметров d0s и v0 аппроксимирующей зависимости (4) приведены в табл.2.



Рис.5. Зависимость толщины пристенного слоя ds масла МРХ-30 (Т = 394 К) на стальной подложке в модели «жесткого, срезаемого течением слоя» от средней (по сечению) линейной скорости течения жидкости <vэ> в зазоре. Обозначения те же, что и на рис.4. Сплошная линия – аппроксимация D1 = 39,7 мкм (·) функцией (4)

Таблица.2

Параметры

МОДели

Толщина зазора D, мкм

39,7

35,0

31,0

d0s, мкм

3.4

3.2

3.1

v0, мм/с

2.2

1.9

2.6

Реологические характеристики пристенного слоя масла МРХ-30 (Т = 294 К) на поверхности стали в модели гидродинамически «жесткого, срезаемого слоя»



Как следует из рис.5 и табл.2, при отсутствии течения пристенный слой масла МРХ-30 на стальной подложке имеет толщину d0s » 3 мкм. «Прочность» слоя на «срезание» сравнительно невелика – уже при скоростях течения <vэ> = v0 ~ 2 мм/с толщина слоя ds~ 1 мкм, а при <vэ> ~ 10 мм/с ничтожно мала. Рассчитанная величина d0s близка, но несколько меньше значений равновесной толщины ЭЖК слоя (d0s » 7 ¸ 9 мкм) алифатических углеводородов и масел, полученных в оптических измерениях [2].

Расхождение с результатами таких измерений по толщине d0s можно объяснить несовершенством модели слоя, принятой для расчетов этого его параметра. В частности, не в пользу модели гидродинамически неподвижного слоя, о его «не жесткости» свидетельствует то, что даже при наименьших зазорах в наших измерениях не было отмечено предельного напряжения сдвига.

По-видимому, модель ЭЖК слоя, участвующего в течении жидкости, более адекватно может описать его реологические свойства. Для развития такой модели представляется необходимым одновременно с вискозиметрическим опытом проведение независимого измерения (оптическими или иными способами) структурных характеристик (толщины, однородности и др.) ЭЖК слоя прослойки при ее течении.


2 Исследование особенности граничного трения ротационным вискозиметром


В настоящей работе в исследованиях был использован разработанный и сконструированный в лаборатории эпитропных жидких кристаллов Одесского Национального Университета ротационный вискозиметр, предназначенный для исследования Куэтовского течения в тонких (5 ¸ 50 мкм) однородных и неоднородных (с приповерхностными структурированными слоями) жидких прослойках.

Для прямых измерений вязкости тонких прослоек смазочных жидкостей между стальными подложками в приборе применялась в качестве рабочей цилиндрической пары вискозиметра стандартный узел топливной аппаратуры - распылитель форсунки, что позволило исследовать вязкость прослоек масла и топлива толщиной до 6 мкм. Схема установки представлена на рис.1. Измерения на приборе проводились методом задания постоянной скорости W (от 3 до 200 об/мин) вращения наружного цилиндра - корпуса форсунки (Rн ~ 3×10-3 м). Набор штоков форсунки - сменных внутренних цилиндров различных диаметров позволял изменять толщину прослойки жидкости до 20 мкм. Пределы измерения коэффициента вязкости составляли h= 5×10-3 ¸1 Па×сек, изменения скорости деформации - e = 50 ¸ 4×103 с-1. Измерителем крутящего момента в вискозиметре является бифилярный подвес 5 (рис.1) с регулируемой чувствительностью. Вращение наружного цилиндра в точно обработанной цилиндрической поверхности корпуса 10, играющего роль подшипника скольжения, обеспечивается реверсивным асинхронным двигателем 3 с редуктором и ременными передачами. Соосность цилиндрической пары и натяжение подвеса обеспечивается системой грузов (калиброванных по массе дисков), располагаемых на цанговом держателе внутреннего цилиндра - штока форсунки. Число устанавливаемых дисков определяет чувствительность бифилярного подвеса к крутящему моменту трения. Прецизионная регулировка чувствительности измерителя крутящего момента обеспечивается изменением длины нитей подвеса. Поверхности деталей, входящие в контакт с исследуемой жидкостью, перед сборкой вискозиметра очищались от механических и органических загрязнений путем промывки растворителями (бензин высокой очистки и эфир) и просушивались. Исследуемые жидкости отстаивались и фильтровались. После заполнения вискозиметра исследуемой жидкостью при различных фиксированных угловых скоростях вращения внешнего цилиндра (в диапазоне  = 102 ¸ 104 рад/с) проводились измерения угла поворота j внутреннего цилиндра. Разброс отсчетов угла в пределах серии измерений был ~ 1%, однако, воспроизводимость последовательных серий достигала 10%, что связано, по-видимому, с возможным попаданием в зазор отдельных частиц твердых примесей. Режимы течения во всех проведенных опытах были ламинарными (Re<<1). «Объемная» вязкость исследовавшихся жидкостей измерялась стандартными капиллярными вискозиметрами.

Рис.1.Схема ротационного вискозиметра.


Исследование было посвящено исследованию масла САЕ 30. Масло отработало 950 часов в циркуляционной системе двигателя 64А25/34. Масло было исследовано и установлено, что на стальной поверхности образуется сравнительно толстый ЭЖК слой. Результаты измерения вязкости приведены на Рис.2. На последнем этапе исследований в масло был введён 1 % алиинновой кислоты, результаты измерения вязкости приведены Рис.4.Толщина слоя между цилиндрами составляла D=13.1мкм.

Рис.2. Зависимость вязкости от средней скорости течения масла: САЕ-30 между цилиндрами в ротационном вискозиметре.


На рис 2 мы наблюдаем ,что вязкость препарата падает со скоростью и примерно при величине скорости 5 мм/с становится равной вязкости изотропной жидкости, что свидетельствует о структурированности приповерхностного слоя.


По аналогии с приведенной теоретической моделью обработки данных в работе с капиллярным вискозиметром.

 Была рассмотрена простейшая гидродинамическая модель "жесткого срезаемого слоя".

 Т.е вязкость приграничного слоя равна бесконечности и эти слои срезаются.

Введем 51=2,      54=1,      53= r

Модель:

В полярных координатах:

х = r cos ω t                                    y = r sin ω t

ω = v / r

Найдем компоненты скорости

Vx = -r ω sin ω t =- ω y

Vy = r ω cos ω t = ω x

Напряжение сдвига

Sxy=η ,                   подставим

для у=0

найдем момент сил

                         


Получим для момента

                            

-толщина приповерхностного слоя.


Используя эту модель можем построить графики зависимость толщины приповерхностного слоя от скорости течения масла.

Рис.3. Зависимость толщины приповерхностного слоя от скорости течения препарата.

На Рис.3  мы видим, что со скоростью приповерхностный слой разрушается и при скорости примерно 5 мм/с он фактически разрушается полностью.

По аналогии проведем расчеты для масла САЕ-30 с добавкой 1% олеиновой кислоты, получим

 Рис .4  Зависимость вязкости от средней скорости течения масла САЕ-30 с добавкой ПАВ между цилиндрами в ротационном вискозиметре.

Применим модель "жесткого слоя", получим:

 Рис.5.  Зависимость толщины приповерхностного слоя от скорости течения препарата с добавкой ПАВ.


 На Рис4 мы видим, что  величина коэффициента вязкости масла уменьшается с ростом скорости сдвиговой деформации более плавно, что связано, с повышение прочности структуры слоя при введении ПАВ. Заметим, что скорость, при которой величина вязкости препарата становится равной вязкости изотропной жидкости, т.е. соответствующая скорости полного разрушения структурированной прослойки более чем вдвое выше, чем для масла САЕ без добавления ПАВ (рис. 2).

Зависимость на Рис 5 говорит о повышении прочности структуры слоя при введении в масло ПАВ.

Механизм действия ПАВ можно представить следующим образом. Молекулы олеиновой кислоты, концентрируясь на межфазной границе раздела масло-металл, образуют мономолекулярный гомеотропно ориентационно упорядоченный слой. Этот слой, являясь ориентантом для эпитропной ЖК фазы масла, способствует повышению дальнего ориентационного параметра порядка ЭЖК — одного из параметров, определяющего «гидродинамическую прочность» структурированного слоя.


Выводы


1.Из ранее проведенных исследований ЭЖК слоев, следует ,что такие структурно чувствительные свойства этих объектов как их вязкость ,толщина, и зависимость этих свойств от скорости течение, температуре влияния ПАВ не достаточно изучена.

2.Для установление свойств собственных эпитропных жидкокристаллических слоев необходимо использование гидродинамических моделей.

3.Проведены исследования реологических свойств моторного масла САЕ-30, на ротационном вискозиметре, при различных скоростях и температурах.

4.В рамках модели ЭЖК слоя «жестко срезаемый слой» рассчитали толщину ЭЖК слоя САЕ-30 и ее изменение со скоростью течение. С ростом скорости течения ЭЖК слой утончается и при скорости 5 мм/с этот слой разрушается .Получены зависимости. Приведены параметры толщины со скоростью и приведены апраксемирующие параметры.

Получены зависимости корелирующие с результатами полученных для подобного смазывающего материала в щелевом вискозиметре.

В вискозиметре исследовалось масло лигированое ПАВ, установлено влияние такой присадки на структурные свойства.

Введение в качестве ПАВ олеиновой кислоты 1% ,приводит к упрочнению ЭЖК слоя: повышению его толщины и разрушается при скорости 10мм/с.

Такое влияние ПАВ может быть практически применено для уменьшения износа и научного обоснованного подбора масла.


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


1.                 Б.А.Алтоиз, В.Т.Дейнега. Влияние граничного слоя жидкости на эффективность теплообмена в системах с каналами малого сечения. Научно-технический сборник «Тепловые режимы и охлаждение радиоэлектронной аппаратуры». Одесса: Вып.1.- 2001.- С.15-18.

2.                 Алтоиз Б.А., Поповский Ю.М. Капиллярный вискозиметр для исследования тонкихнеоднородных жидких прослоек Вюпик Одеськ. держ. ун-ту.- 2001.   1.6, вип.З. Фп. мат. науки-С. 191-198.

3.                 Алтоиз Б.А., Поповский Ю.М. Физика приповерхностных слоев. - Одесса: Астропринт, 1995.- 153 с;

4.                 Ландау Л.Д., Лившиц Е.М. Гидродинамика.-М.: Наука, 1986.-617с.

5.                 Царгородская А.Б., Алтоиз Б.А., Поповский А.Ю. Исследование ориентациошюй слоев нитробензола, образованных на металлической эролиспершых систем. К.- Одеса, В ища школа, -1998-

6.                 Б.А.Алтоиз, А.Ю.Поповский. Метод клиновидной кюветы в исследованиях ориента-ционно упорядоченных пристенных слоев, сформированных вблизи непрозрачных подложек // Зб1рник наукових праць «Вюник Одеського державного ушверситету". -1999.-Т.4.-Вип.4.-С.22-26

7.                 Поповский Ю.М.. Берникова Н.Б. Исследование оптической анизотропии граничных слоев полидиметилсилоксилана и его смесей стетрадеканом. // Вопросы физики формообразования и фазовых превращений. - Калинин: КГУ. - 1983. - С. 25-32

8.                 .Зорин З.М., Чураев Н.В.. Новикова А.В. Вязкость полимолекулярных пленок воды и декана на поверхности кварца // Вопросы физикиформообразования и фазовых превращений. -Тула, 1993. - Вып. 3. -С. 42-49.

9.                 Алтоиз Б.А., Поповский Ю.М. Физика приповерхностных слоев. -Одесса: Астропринт, 1995. -153 с.

10.            Алтоиз Б.А., Поповский Ю.М. Капиллярный вискозиметр для исследования тонких неоднородных жидких прослоек // BicHHK Одеськ. нашон. ун-ту. -2001. -Т. 6. - Вип. 3. Ф1з.-мат. науки. - С. 191-198.

11.            Овчинников П.Ф. Виброреология. - Киев: Hay ко ва думка, 1983. -271 с.

12.            Алтоиз Б.А., Поповский Ю.М. Капиллярный вискозиметр для исследования тонких неаднородных жидких прослоек // Весник Одеськ. нацон. ун-ту. 2001. Т.6. Вип.З.

13.            Алтоиз Б.А., Поповский А.Ю. Метод клиновидной кюветы в исследованиях ориентационно упорядоченных пристенных слоев сформированных вблизи непрозрачных подложек // Вісник Одеськ. держ. ун–ту.– 1999.– Т. 4., вип.3. Фіз.–мат. науки.– С. 22–26.

14.            Поповский Ю.М., Берникова Н.Б. Исследование оптической анизотропии граничных слоев полидиметилсилоксилана и его смесей с тетрадеканом. // Вопросы физики формообразования и фазовых превращений.– Калинин: КГУ. – 1983. – С.25–32.

15.            Зорин З.М., Чураев Н.В., Новикова А.В. Вязкость полимолекулярных пленок воды и декана на поверхности кварца // Вопросы физики формообразования и фазовых превращений. – Тула:– 1993. – Вып.3. – С.42–49.

16.            Алтоиз Б.А., Поповский Ю.М. Физика приповерхностных слоев. – Одесса: Астропринт, 1995.–

17.           Р.Фейман., Р.Лейтон., М. Сэндс. Фейнмановские лекции по физики. // Физика сплошных сред. - Москва: Мир, 1977-С253-257


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.