Рефераты. Исследование физических явлений в диэлектрических жидкостях инициируемых лазерным излучением






За одну секунду поле совершает над электроном работу


;


где знаком  обозначено усреднение по времени, то есть за период колебаний. Эта работа идет на увеличение кинетической энергии электрона , в основном энергии его хаотического движения, которая скоро становится гораздо больше энергии колебательного движения . Проделывая с помощью формулы (5) для  операцию усреднения, найдем скорость набора энергии в осциллирующем поле


 , (5)


где - среднеквадратичное электрическое поле в волне.

Рассматривая процесс набора энергии электроном в поле световой волны с квантовых позиций (электрон поглощает и вынужденно испускает световые кванты при столкновениях с атомами), можно показать, что средняя скорость набора энергии в поле фотонов выражается той же формулой (6). где поле Е связано с плотностью потока фотонов F естественным соотношением . Формула оказывается справедливой не при жестком условии, что среднее приобретение энергии при столкновении , а при более мягком условии, что сама средняя энергия . Но средняя энергия электронного спектра при пробое сравнима с потенциалом ионизации, иначе ионизационный процесс не мог бы протекать столь быстро. Потенциал ионизации составляет, как мы видели, много квантов, поэтому неравенство  в самом деле можно считать выполненным [2].

Поле связано с интенсивностью соотношением


, В/см (6).

 

Скорость дрейфа электронов приблизительно равняется:


 ,


 ; (7)


где - подвижность связана с коэффициентом диффузии электронов соотношением.


3.2 Модель келдыша – файсала – риса


 Исходная модель Келдыша. Цель этого раздела состоит в аналитическом приближенном решении нестационарного уравнения Шредингера, описывающего поведение атомарной системы во внешнем электромагнитном поле:

 , (8)


Здесь - невозмущенный гамильтониан атомарной системы, а величина  представляет собой потенциал взаимодействия атомарной системы с внешним электромагнитным полем. Предполагаются известными собственные функции и собственные значения энергии стационарного гамильтониана:


, (9)


Точное выражение для амплитуды перехода из начального связанного состояния атома или атомарного иона i в конечное состояние непрерывного спектра f под действием поля лазерного излучения имеет следующий вид ( напомним, что всюду используется атомная система единиц, в которой постоянная Планка, масса электрона и его заряд предполагаются равными единице):


, (10)


Здесь конечное состояние описывается точной волновой функцией . Выражение (10) эквивалентно исходному нестационарному уравнению Шредингера (8).Вероятность связанно-свободного перехода  за время t дается квадратом модуля выражения (10).

Начальное состояние дискретного спектра атома в (10) является невозмущенным и берется из решения уравнения (9).Взаимодействие атома с электронным полем бралось Келдышем в дипольном приближении (так как размеры атома малы по сравнению с длиной волны электромагнитного излучения), используя так называемую калибровку «длины»


, (11)


 Здесь F – вектор напряженности электромагнитного поля электромагнитной волны. Предполагалось, что это поле мало по сравнению с характерным атомным полем рассматриваемой атомной системы [2].

 Основная идея Келдыша заключалась в том, чтобы заменить неизвестную точную волновую функцию конечного состояния на так называемую волковскую волновую функцию, в которой пренебрегается полем атомного остова и учитывается только поле электромагнитной волны. В калибровке длины этой волновая функция имеет следующий вид


, (12)


 Здесь векторный потенциал электромагнитного поля связан с напряженностью поля известным соотношением


 , (13)


Указанная волновая функция (11) описывает электрон, колеблющийся в поле электромагнитной волны и имеющий канонический импульс . Средняя (за период колебаний) энергия колебаний Eкол электрона в поле монохроматической электромагнитной волны с частотой  равна  (для поля линейной поляризации) или  (для поля циркулярной поляризации).

Тогда из (10) для амплитуды связанно-свободного перехода получим приближенное выражение:


, (14)


Энергия фотона лазерного излучения предполагается в подходе Келдыша малой по сравнению с потенциалом ионизации атома (или атомарного иона):

,

Это условие, вместе с условием малости напряженности поля по сравнению с атомной напряженностью, позволяет вычислить аналитически амплитуду перехода, используя метод перевала при интегрировании по времени. Конечно. Такой подход наиболее приемлем для короткодействующего потенциала, для которого только волновая функция S - состояния непрерывного спектра не является плоской волной.

 В предположении, что лазерное поле является монохроматическим, т.е. напряженность поля лазерного излучения имеет вид


,


Келдыш получил вероятность ионизации в единицу времени. Без учета предэкспоненты для случая поля линейной поляризации эта экспоненциально малая вероятность не зависит от вида атомарного потенциала и имеет универсальный вид:

 , (15)


В полученном выражении введен так называемый параметр адиабатичности (или параметр Келдыша)


 ; (16)


Именно он и определяет характер процесса нелинейной ионизации. Еще раз подчеркнем, что полученное выражение справедливо с потенциальной точностью. Для поля циркулярной или эллиптической поляризации аналогичное выражение выглядит более громоздко, и мы его не приводим.

Отметим также, что модель Келдыша калибровочно неинвариантна. Это означает, что выражение для вероятности нелинейной ионизации зависит от того, в какой форме выбирается взаимодействие атома с полем лазерного излучения: в калибровке « длины» или же в калибровке «скорости». Априори неясно, какая из этих форм дает более точные результаты [1].


3.2.1 Туннельный предел

Туннельный режим соответствует низкочастотному пределу, когда параметр адиабатичности много меньше единицы, точнее, . В этом пределе зависимость вероятности ионизации от частоты поля исчезает, а сама вероятность ионизации в единицу времени (15) приобретает ту же форму, что и для ионизации атома медленно меняющимся со временем электрическим полем, усредненную по периоду поля:

 , (17)


Основной вклад в эту вероятность дают слагаемые в сумме (15) с очень большими числами N поглощенных фотонов порядка . Эти числа велики по сравнению с минимальным числом  поглощенных фотонов, допустимым законом сохранения энергии. Сумма по числам поглощенных фотонов в окрестности этого значения заменяется непрерывным интегрированием. Так выглядит надпороговое поглощение фотонов электромагнитного излучения в туннельном режиме ионизации [1].

 Однако точное решение указанной задачи для ионизации основного состояния атома водорода постоянным электрическим полем с учетом усреднения вероятности по периоду медленно меняющегося поля линейной поляризации дает результат с другой предэкспонентой:


 ; (18)


Необходимо отметить, что выражение (18) показывает вероятность ионизации одного атома в единицу времени [2].


3.3 Механизм ионизации


Важнейшим механизмом рождения зарядов в разрядах является ионизация невозбужденных молекул ударами электронов. Скорость ионизации, т.е. число актов в 1см3 за 1с равно

, (19)

,


 где - сечение ионизации электронами с энергией , - функция их распределения по энергиям, I- потенциал ионизации, - частота ионизации - постоянная, N- число молекул.

Частота ионизации является главной характеристикой процесса. Скорость ионизации целесообразно характеризовать ионизационным коэффициентом - число актов ионизации совершаемых электроном на 1см пути вдоль поля Е.

В нашем случае постоянного поля  (20), а электронная лавина нарастает вдоль направления движения Х по закону ;

3.4 Пробой нашего разрядного промежутка механизмом размножения лавин


Напряженность поля равна  (21), где U- приложенное напряжение к электродам d- расстояние между ними. Пусть со стороны катода вылетел один электрон. На анод в результате размножения поступит  электронов, т.е. от одного первичного получится новых электронов и столько же положительных ионов. Будучи вытянутыми на катод, ионы вырвут из него  вторичных электронов, которые породят новые лавины, т.е. произойдет пробой если в каждом цикле число вторичных электронов будет превышать число первичных ()

Величина  резко зависит от E, как экспонента в экспоненте, т.е. условие =1 достаточно точно характеризует величину пробивного поля Ei

 

 ; (22)


это условие называется критерием Таунсенда.


3.5 Расчет плотности мощности излучения


Энергия E является интегральным параметром , для непрерывного излучения (Вт/см2) , где S – площадь пятна фокусирования (фокального пятна) ; - диаметр пятна фокусирования. При наших параметрах = 0.4мм = 0.04см = 0.0004м.

q=Вт/м2 =Вт/см2.


3.5.1 Размеры области фокусировки лазерного излучения

Размер кружка фокусировки излучения порядка , где -расходимость лазерного излучения, - фокусное расстояние фокусирующей линзы. При 10-3 и 13 мм. 0,2 мм. Полагая, что размер области фокусировки по оси оптической системы мм, получаем для объема области фокусировки оценку

мм.3


3.5.2 Оценим напряженность поля (Е) между электродами:

;

где U – приложенное напряжение к электродам, а d – расстояние между ними. При U=200 В. и d=2*10-4 м. получаем

 =106 В/м = 104В/см


3.5.3 Оценим напряженность поля (Е) нашего ЛИ через вектор Пойтинга:

,

,

 , где I- интенсивность излучения,

откуда получаем искомую величину

;


В/м.

Рассмотрим вероятность туннельного механизма ионизации когда параметр адиабатичности много меньше единицы, точнее, .

В этом пределе зависимость вероятности ионизации от частоты поля исчезает, а сама вероятность ионизации в единицу времени приобретает ту же форму, что и для ионизации атома медленно меняющимся со временем электрическим полем, усредненную по периоду поля:

 , (18)


,

;

Необходимо отметить, что выражение (18) показывает вероятность ионизации одного атома в единицу времени. В нашем случае в взаимодействие ЛИ происходит не с одним атомом, а имеется фокальная область (V) и кол- во атомов в ней зависит от конкретного типа вещества, т.е. необходимо умножать эту вероятность на число атомов в данном обьеме.


3.6 Выводы по главе 3


1.                 Проведен анализ физических процессов в области воздействия лазерного излучения на вещество, который выявил последовательность этих процессов и показал возможность получения пробоя воздействием лазерного излучения на вещество.

2.                 Разработаны методика расчета параметров пробоя в канале проводимости и математическая модель для расчета необходимых условий для возникновения пробоя в зоне воздействия лазерного излучения.

3.                 Рассмотрена вероятность туннельного механизма ионизации когда параметр адиабатичности много меньше единицы, точнее,  и получена вероятность ионизации вещества при заданных параметрах лазерного излучения: интенсивность излучения, напряженность поля, потенциал ионизации вещества.

4.                 Проведен расчет параметров пробоя: напряженность поля (Е), размеры области фокусировки лазерного излучения (V), расчет плотности мощности излучения и т. д.

4 Материал и методики исследования

4.1 Конструкция экспериментальной установки

Для проведения экспериментальных исследований мною была создана экспериментальная установка, состоящая из экспериментальной ячейки с исследуемым образцом и лазерной технологической установки ЛТУ-200 которая ранее для этих целей не использовалось.

Созданная экспериментальная установка включала в себя:

1) Экспериментальную ячейку (ЭЯ);

2) Источник питания ЭЯ;

3) ЛТУ-200;

4)Измерительные приборы, фиксирующие наличие пробоя (вольтметр, амперметр, осциллограф).

Схема установки и методика проведения эксперимента показана на рис.14. и заключается в следующем:


Рисунок.14. Схема установки, где L&I - источник излучения и экспериментальная ячейка с исследуемым образцом (жидкости), где Т - латэр (источник переменного напряжения), D – диодный мост, С – конденсатор, А – амперметр, V – вольтметр, L&I - экспериментальная ячейка с исследуемым образцом и лазерная технологическая установка ЛТУ-200.


Экспериментальная ячейка (ЭЯ)


Рисунок.15. внешний вид экспериментальной ячейки (ЭЯ).

 

Конструкция ЭЯ показана на рис.15 и состоит из следующих элементов:

·                   Основание - столик микроскопа БМИ-1Ц позволяющего перемещать ячейку по осям ХУ с точностью 10-5 м.

·                   Ячейки с исследуемой жидкостью.

·                   Электродов, зазор между которыми можно менять с шагом 10-5 м.

1)    Источник питания ЭЯ.

Целью разработки системы электропитания ЭЯ было обеспечение заданных требований по напряжению и силе тока (т.е. величин влияющих на характер эрозионных процессов).


Рисунок.16. внешний вид источника питания ЭЯ.

 

 Источник питания ЭЯ позволял изменять падение напряжения на электродах от 0 В. до 200 В., состоял из следующих элементов:

·                      Латэр мощностью 400 Вт;

·                       Выпрямителя напряжения собранного на диодном мосту (диоды-Д226Б).

2)    ЛТУ-200.

1) CO2-лазер непрерывного излучения ЛГП-200;

2) программируемый координатный стол на базе станка сверлильно-фрезерного КСС-2Ф3 с устройством числового программного управления (ЧПУ) Луч- 43;

3) система электропитания лазера, на базе сварочного выпрямителя ВСЖ-03;

4) система охлаждения лазера;

5) задающий генератор Г5-54;


Рисунок.17. Внешний вид технологической установки ЛТУ-200.


6) система подачи вспомогательного газа;

7) газолазерный резак;

8) блок управления технологической установкой.

В качестве источника излучения использовался электроразрядный СО2 - лазер, в котором используются нижние колебательные уровни возбуждённых молекул СО2 для генерации инфракрасного излучения с длиной волны 10,6 мкм.

Для повышения эффективности генерации излучения молекул углекислого газа в большинстве СО2 - лазеров используется газовая смесь с различным процентным содержанием диоксида углерода СО2, азота N2 и гелия Не. Добавка азота в рабочую газовую смесь способствует усилению генерации лазерного излучения, а гелий в основном интенсифицирует отвод теплоты во время генерации вследствие высокой теплоёмкости и теплопроводности, понижая тем самым общую температуру смеси.

В СО2 - лазерах наиболее распространена схема с самостоятельным электрическим разрядом, совмещающим функции накачки рабочей смеси и ионизации. Такие типы лазеров конструктивно оформляются наиболее просто, и в большинстве известных отечественных и зарубежных лазеров мощностью излучения до 1000 Вт используется схема электроразрядного лазера с самостоятельным разрядом [11, 12,13].

В современных конструкциях СО2 - лазеров для увеличения эффективности использования рабочей смеси необходимо поддерживать её температуру на оптимальном уровне и не допускать перегрева. С этой целью осуществляется охлаждение либо по принципу отвода теплоты от разрядной трубки (СО2 - лазеры с диффузионным охлаждением рабочей смеси)[11], либо непосредственной циркуляцией рабочей смеси с целью замены нагретых объёмов (лазеры с конвективным охлаждением) [12].


Рисунок.18. Схема размещения излучателя лазера и ВЧ БП на ЛТУ-200;


1-излучатель, 2- ВЧ БП, 3- манометр, 4- газолазерный резак

Лазер ЛГП-200 разработан и изготовлен в КБ приборостроения (г. Тула). Лазер газовый (CO2), отпаянный, волноводного типа. Тип излучения – непрерывное. В состав ЛГП-200 входят излучатель и высокочастотный блок питания (ВЧ БП), имеющие водяное охлаждение. Схема размещения излучателя лазера и ВЧ БП на установке показаны на рис. 4.4. [18].

Лазер имеет следующие технические характеристики:

- длина волны 10.6 мкм;

- диапазон изменения мощности излучения от 5 до 100 Вт;

- расходимость ЛИ 0.002 рад;

- выходная апертура луча 12 мм;

- модовый состав излучения TEM10;

- напряжение питания 27 ± 1.5 В;

- максимальная потребляемая мощность 2700 Вт;

- частота задающих импульсов 10 кГц;

-         энергия кванта излучения-hn=0,117 эВ.

4)Измерительные приборы.

Измерительные приборы, фиксирующие наличие пробоя составляли:

·                    осциллограф С1-18;

·                    вольтметр Ц342-М1;

·                    амперметр Ц342-М1.


4.2 Выбор типа исследуемой жидкости


Выбор типа исследуемой жидкости был обусловлен рядом особенностей в соответствии с поставленной целью и задачей работы. Перечислим основные требования:

1.                Использование в традиционных методах электроэрозионной обработки материалов.

2.                Возможность использования исследуемой жидкости в нашей установке.

3.                Небольшой потенциал ионизации.

 
4.3 Методика экспериментальных исследований

Основной целью проведенных экспериментов было исследование влияния лазерного излучения на электропроводность диэлектрических жидкостей и изучение практической возможности реализации электроэрозионных явлений в диэлектрической среде. Эксперименты проводятся для исследования влияния следующих параметров:

·                    Расстоянием между электродами;

·                    Падением напряжения на электродах;

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.