Рефераты. История изучения капиллярных и поверхностных сил






Другой обобщенной и также физически эквивалентной формой является запись уравнения адсорбции Гиббса для слоя конечной толщины [24]


Ads=                                    (36)

где Va и Vb — части объема Vs поверхностного слоя, разде­ленные поверхностью натя­жения.

В случае плоской поверхности уравнение (17) принимает вид [4, 17, 18]


                                          (37)

 и соответствует уравнению (32).

Выше мы указывали, что уравнение (34) было получено Гиббсом для гра­ницы флюидных фаз. Соответствующее уравне­ние для плоской твердой поверх­ности в изо­тропном состоянии было выведено Эрикссоном [30]


                                       (38)

где

         g — механический аналог поверхностного натяжения жид­кости (истинное поверхно­стное натяжение твердого тела);

         s — термодинамический аналог поверхностного натяжения жидкости (условное по­верхностное натяжение твер­дого тела).

В общем случае анизотропной поверхности твердого тела уравнение ад­сорбции принимает вид [26, 27]

:                                     (39)

где

          — тензор избыточных поверхностных напряжений;

          — единичный тензор;

         тензор поверхностной деформации; символ : озна­чает скалярное произ­ведение тензоров.

В уравнении (39) суммирование производится по всем под­вижным компо­нентам. Что касается неподвижных компонен­тов, образующих решетку твердого тела, то их хи­мические потенциалы не фигурируют в уравнении (39). Гиббс во­обще не вводил поня­тия химический потенциал неподвижного компо­нента. Его можно определить лишь ус­ловно и отдельно для каждого направления разреза твердого тела как химический по­тенциал в равновесной флюидной фазе, кон­тактирующей с твердым телом по данному разрезу. Определенный таким об­ра­зом химический потенциал неподвижного компо­нента mi' зависит в каждой точке тела от направления нормали  к мыс­ленной поверх­ности разреза.

Кроме того, даже в состоянии истинного равновесия вели­чина mi не будет одина­ковой для всех точек разреза и поэтому при переходе к избыточным вели­чинам для межфазной поверх­ности приходится брать избыток от произведения химического по­тенциала на массу неподвижного компонента. Для каждого на­правления  на межфаз­ной поверхности можно определить величину

                                             (40)

причем существует соотношение [31, 32]

                                                                                         (41)

где gn — натяжение на поверхности в направлении  .

Подстановка (41) в (39) приводит к уравнению [31, 32]

 :                                (42)

которое также является обобщением уравнения адсорбции Гиббса на случай твердой поверхности, но сформулировано в терминах избыточного поверхност­ного напряжения. Для жидкой поверхности , и уравнения (39) и (42) переходят в уравнение адсорбции Гиббса.

При применении уравнения адсорбции Гиббса к поверх­ности жидкого электрода в нем появляется дополнительный член, связанный с изменением электрического потен­циала. Можно сказать, что для изотермо-изобарических условий этот член был получен самим Гиббсом, поскольку он дал термоди­на­мический вывод уравнения Липпмана. В дальнейшем этот вопрос многократно обсуждался при исследовании электрокапилляр­ных явлений (см., например, [33 – 35]). Строгий вы­вод уравнения адсорбции Гиббса для плоского поверхност­ного слоя электрода был дан Парсонсом [36]. Соответствующую теорию для искрив­ленного слоя можно найти в [25, 14].

К весьма сложным разделам термодинамики поверхностных явлений отно­сится анализ искривленных поверхностей во внешних полях. Гиббсом было на­чато рассмот­рение поверх­ностных явлений в гравитационном поле. Что касается элек­трического поля, то результаты были получены значительно позднее. Труд­ность рассмотрения здесь сильно зависит от того, являются ли соприкасаю­щиеся фазы проводниками или ди­электриками, Задача для соприкасающихся проводников ре­шается сравнительно про­сто [37], для диэлектриков — зна­чи­тельно сложнее [38].

Важным моментом в развитии термодинамики поверхност­ных явлений было обобщение уравнения адсорбции Гиббса на случай отсутствия адсорбци­онного равнове­сия. Здесь нужно отметить прежде всего работы Дефэя [39, 40], в которых было вве­дено понятие вторичных химических потенциалов ei отра­жающих зависимость поверх­ностного натяжения от состояния объемных фаз a и b :

                         (43)

В уравнении (43) предполагается, что термическое и меха­ническое равно­весие ус­тановилось, а диффузионное еще не достигнуто.

Процесс установления адсорбционного равновесия включает трансляцион­ное и вращательное движение молекул, в част­ности, ориентацию несферических молекул в поверхностном слое. Если ориентация происходит гораздо медленнее трансля­ционно-диффузионного процесса, то можно представить слу­чай, когда вся неравновесность системы обусловлена процессом ориентации молекул (например, диполей) в поверхно­стном слое. Для такого случая было предложено обобщение уравне­ния Гиббса [37]

    (44)

 

где

         — среднее значение составляющей по оси x дипольного момента мо­лекул i‑го компо­нента в фазе a;

         — среднее значение квадрата той же ве­личины;

          и  — соответствующие сродства; суммирова­ние по x и a означает сумми­рование по всем составляющим дипольного момента и по всем фазам и тонким эле­ментарным слоям внутри поверх­ностного слоя, рассматриваемым как однородные области.

Следует отметить, что в основе вывода уравнения (44) лежит весьма ус­ловное предположение о независимости транс­ляционных и вращательных со­ставляющих ад­сорбционно-диф­фузионного процесса.

Развитие новых направлений в

 термодинамике поверхностных явлений

Термодинамика тонких пленок


Гиббс в теории капиллярности ограничился рассмотрением только тол­стых пле­нок, в которых можно пренебречь взаимо­влиянием поверхностных слоев на противопо­ложных сторонах пленки. Тонкая пленка принципиально от­личается от толстой тем что ее поверхностные слои нельзя рассматривать неза­висимо друг от друга. Фактически в тонкой пленке уже нельзя выделить объем­ную фазу и окружающие ее поверхностные слои, а необходимо рассматривать пленку в целом. Важной характеристикой, отличаю­щей тонкую пленку от тол­стой, является расклинивающее давление; в опытах оно про­является в том, что при переходе от толстой к тонкой пленке требуется изменение внешнего давле­ния. Понятие расклинивающего дав­ления было введено Дерягиным [42], кото­рому принадлежат и первые измерения этой величины.

Существует несколько эквивалентных определений раскли­нивающего дав­ления плоской тонкой пленки. Прежде всего расклинивающее давление П можно определить как разность между значениями внешнего давления Pa на тонкую и толстую пленку

                                                 (45)

где h — толщина тонкой пленки.

Если тонкая пленка образовалась из фазы g и продолжает находиться с ней в рав­новесии (например, при прилипании пузырька к твердой поверхности: фаза a — газ, фаза g — жид­кость), то расклинивающее давление можно определить как:

                                              (46)

Наконец, поскольку для плоской пленки внешнее давление всегда равно нормаль­ной составляющей тензора давления внутри пленки, можно дать опре­деление

                                                    (47)

и сформулировать его следующим образом:

расклинивающее давление есть разность между нормальным давлением внутри пленки (или внешним давлением) и давле­нием в объемной фазе той же природы при тех же значениях температуры и химических потенциалов, что и в пленке.

Определение (46) впервые использовали в эксперименталь­ных исследова­ниях рас­клинивающего давления [42 – 45], а оп­ределение (47) — для расчетов [46].

Как величина термодинамическая, расклинивающее давле­ние может быть связано с другими термодинамическими пара­метрами, и относящиеся к этой об­ласти соотноше­ния образуют термодинамику тонких пленок как особый раздел теории ка­пиллярности. Разработка этого раздела содержится в целом ряде работ (см., например, [47 – 57]). По­следовательное изло­жение термодинамики тонких пленок дано в монографии [25, стр. 259 – 310]. Термодинамика тонких пленок нашла важное приложение в теориях элек­трокапиллярности, адсорб­ции и хро­матографии (ссылки на конкретные работы можно найти в [14]).

Здесь мы продемонстрируем в качестве примера подход к термодинамике тонких пленок, связанный с введением двух разделяющих поверхностей. Пред­ставим, что пленка образо­валась путем утоньшения слоя фазы g между фазами a и b . Тогда, вы­брав положение двух разделяющих поверхностей и взяв избытки со стороны фаз a и b , мы придем к уравнению (32) для слоя конечной тол­щины, которое в данном случае имеет вид

gdA                             (48)

где

         g — натяжение пленки;

         h — расстояние между разделяющими поверхностями.

Теперь мы сделаем еще один шаг [66]: возьмем избыток по от­ношению к фазе g, то есть вычтем из (48) уравнение

                                          (49)

Используя определение (53), получаем

gdA                                   (50)

где ,  и  — совместные для обеих поверх­ностей избытки энергии, энтропии и массы i-го компонента.

Уравнение (50) справедливо при любом положении разде­ляющих поверх­ностей. Оно играет роль основного фундамен­тального уравнения тонкой пленки, из которого могут быть получены многие другие термодинамические соотношения. В частности, из (50) получаем выражение

                                         (51)

которое также может рассматриваться как определение раскли­нивающего дав­ления. Из (50) следует еще два фундаментальных уравнения:

gA                         (52)

                                 (53)

Уравнение (53) является аналогом уравнения адсорбции Гиббса (в терми­нах абсо­лютной адсорбции). Как и уравнение адсорбции Гиббса, оно не является самостоятель­ным термоди­намическим соотношением и для получения каких-либо физи­ческих зави­симостей должно рассматриваться совместно с фун­дамен­тальными уравнениями для объемных фаз.

Отметим, что приведенные определения расклинивающего давления отно­сятся только к плоской пленке. При переходе к случаю искривленной пленки возникают сле­дующие ослож­нения: определения (45) – (47) перестают быть эк­вивалентными; каждое из этих определений утрачивает свою однозначность. Так, если пользоваться определе­ниями (45) и (46), то для искривленной пленки будут существовать два расклиниваю­щих давления, поскольку давления Рa и Рb по обеим сторонам пленки будут различ­ными. Определением (47) воспользо­ваться еще труднее, так как в случае искривленной пленки вели­чина Рn является функцией пространственных координат.

Для описания дальнодействующих поверхностных сил в искривленных пленках можно использовать более фундаментальное понятие работы смачива­ния, введенное в [58]. Для плоских пленок работа смачивания просто выража­ется, если известна изо­терма расклинивающего давления (т.е. зависимость P(h) при данной температуре). Для искривленных же пленок необходимо делать ка­кие-то другие предположения о виде зависимости работы смачивания от тол­щины пленки.

Таким образом, даже задача адекватного описания дальнодействующих поверхно­стных сил на сегодняшний день остается нерешенной.

В целом можно отметить, что термодинамический подход Гиббса к описа­нию ка­пиллярности оказался очень плодотворным. По сей день теория Гиббса остается весьма полезной как в чисто теоретических исследованиях, так и в прикладных задачах. Значи­тельные успехи достигнуты также в термоди­намике адсорбции, смачивания, нуклеации, электродных про­цессов и в других областях.

Заключение


Как видно из приведенного исторического обзора, капиллярные явления изуча­ются уже почти триста лет. За это время довольно сильно изменились спо­собы описа­ния капиллярных и поверхностных сил. Однако, интересно отметить, что практически с самых первых работ по теории капиллярных явлений, люди совершенно правильно от­носили их к макроскопическим проявлениям сил, дей­ствующих между частицами в веществе. С развитием представлений об этих си­лах менялось и понимание их роли в тех или капиллярных явлениях.

Первые оценки радиуса действия межмолекулярных сил были грубыми и сильно завышенными. Соответственно, первые теории капиллярности были грубыми механи­стическими теориями среднего поля.

Теория Гиббса дала совершенно новый инструмент исследования поверх­ностных явлений. С использованием мощного и универсального аппарата тер­модинамики уда­лось дать более строгие определения понятиям границы раздела фаз, толщины пленки и т.д. Кроме того, формула Лапласа для разности давле­ний в фазах вблизи искривленной поверхности их раздела была получена в тео­рии Гиббса без всяких дополнительных предположений о радиусе действия межмолекулярных сил. Подход, развитый Гиббсом, и сегодня не теряет своей актуальности в силу своей универсальности и удивительной широты охвата яв­лений.

В настоящее время исследования в области капиллярных и поверхностных сил продолжаются, что обусловлено как их важностью в различных областях науки, так и широким спектром практических приложений.


Литература.

 

1.    [D&L2] © Hauksbee F. Physico-Mechanical Experiments, London, 1709, pp. 139–169; and Phil. Trans., 1711 and 1712.

2.    Maxwell J.C. Capillary Action. The Encyclopaedia Britannica, 11th edition, Cambrige: at the University Press, 1910, vol. 5, p. 256.

3.    © Jurin J. Phil. Trans., 1718, p. 739, and 1719, p. 1083.

4.    © Clairault A.C. Thйorie de la figure de la terre, Paris, 1808, pp. 105, 128.

5.    © von Segner J.A. Comment. Soc. Reg. Gцtting. i. (1751), p. 301.

6.    © Leslie J. Phil. Mag., 1802, vol. xiv p. 193.

7.    © Young T. Cohesion of Fluids, Phil. Trans., 1805, p. 65.

8.    ¨ Laplace P.S. Traitй de Mйcanique Cйleste; Supplйment au dixiйme livre, Sur l’Action. Capillaire (1807); in: Oeuvres complйtes de Laplace, v. 4. Gauthiers-Villars, Paris, 1880, p. 349, 419.

9.    Роулинсон Дж., Уидом Б. Молекулярная теория капиллярности. М.: Мир, 1986.

10.¨ Lord Rayleigh, Phil. Mag. 30, 285, 456 (1890); Scentific Papers, v. 3. Cambrige University Press, 1902, p. 397.

11.¨ Duprй A. Thйorie mйcanique de la Chaleur. Gauthier-Villars, Paris, 1869, p. 152.

12.§ Gibbs J.W. Trans. Conn. Acad., 1878, v.3, p. 343; Гиббс Дж. В. Термодина­мические работы. М. – Л., Гостехиздат, 1950.

13.§ Gibbs J.W. Prос. Amer. Acad., 1881, v. 16, p. 420.

14.Русанов А.И. 100 лет теории капиллярности Гиббса. В сборнике: Современ­ная тео­рия капиллярности. Л.: Химия, 1980.

15.§ Wilson Е.В. A letter from lord Rayleigh to J. Willard Gibbs and his reply. Proc. Nat. Acad. USA, 1945, v. 31, p. 34.

16.§ Guggenheim Е. A.   Trans. Faraday Soc., 1940, v. 36, p. 397.

17.§ Rice J. A. Commentary of the Scientific Writings of J.W. Gibbs. V. I/F. G. Donnan and A. Haas, eds. New Haven, 1936.

18.§ Kondo S.  J. Chem. Phys., 1956, v. 25, p. 662.

19.Оно С., Кондо С. Молекулярная теория поверхностного натяжения в жидко­стях. М., ИЛ, 1963.

20.§ Ван-дер-Ваальс И. Д., Констамм Ф. Курс термостатики. т. 1. ОНТИ, 1936.

21.§ Bakker С. Kapillarität und Oberflächenspannung. Handb. der exper. Phys. Bd. VI. Leipzig, Wien – Harms, 1928.

22.§ Verschaffelt. Acad. Roy. Belgique, Bull. classe sci., 1936, v. 22, p. 373, 390, 402.

23.§ Eriksson J. С.   Ark. Kemi, 1965, v.25, p. 331, 343; 1966, v. 26, p. 49, 117.

24.§ Русанов А. И. Термодинамика поверхностных явлений. Л., Изд. ЛГУ, 1960.

25.§ Русанов А. И. Фазовые равновесия и поверхностные явления. Л., Химия, 1967.

26.§ Goodrich F. С.  Surface and Colloid. Science. V. l/Matijevic Е., ed. N. Y., Wiley, 1969.

27.§ Buff F. P.   J. Chem. Phys., 1951, v. 19, p. 1591.

28.§ Hill Т. L.   J. Phys. Chem., 1959, v. 52, p. 526.

29.§ Русанов А. И.  Вестник ЛГУ, 1959, № 16, с. 71.

30.§ Eriksson J. С.  Surface Sci., 1969, v. 14, p. 221.

31.§ Русанов А. И.  Коллоидн. ж., 1977, т. 39, с. 711.

32.§ Rusanov A. I.   J. Coll. Interface Sci., 1978, v. 63, p. 330.

33.§ Frumkin A.   Ergebnisse exakt. Nature, 1928, v. 7, p. 235.

34.§ Koenig F.O.   J. Phys. Chem., 1934, v. 38, p. Ill, 339.

35.§ Butler J. A. V. Electrocapillarity. The Chemistry and Physics of Electrodes and other Charged Surfaces. London, Methuen, 1940.

36.§ Parsons R.   Canad. J. Chem., 1959, v.37, p. 308.

37.§ Sanfeld A. Introduction to the Thermodynamics of Charged and Polarized Layers. London, Wiley, 1968.

38.§ Русанов А. И. — ДАН СССР, 1978, т. 238, с. 831.

39.§ Defay R. Etude Thermodynamique de la Tension Superficielle. Paris, 1934.

40.§ Defay R., Prigogine I. Tension Superficielle et Adsorption. Desoer, Liege, 1951; Defay R., Prigogine I., Bellemans A. Surface Tension and Adsorption. London, Longmans, 1966.

41.§ Rusanov А. I. Progress in Surface and Membrane Sci. V. 4. N. Y., Academic Press, 1971.

42.§ Дерягин Б. В., Обухов E.   Acta physicochim. URSS, 1936, v. 5, p. 1.

43.§ Дерягин Б., Кусаков М.   Изв. АН СССР. Сер. хим., 1936, с. 741; 1937, с. II 19.

44.§ Дерягин Б. В., Титиевская А. С.   ДАН СССР 1953 т. 89, с. 1041.

45.§ Дерягин Б. В., Абрикосова И. И.   Там же, 1956, т. 108, с. 214; Ж. физ. хим., 1958, т. 32, с. 442.

46.§ Русанов А.И., Куни Ф.М.   В кн.: Исследования в области поверхностных сил. М., Наука, 1967, с. 129.

47.§ Фрумкин А. Я.   Ж. физ. хим., 1938, т. 12, с. 337.

48.§ Derjaguin В. V.    Acta physicochim. URSS, 1940, v. 12, p. 181.

49.§ Мартынов Г. А., Дерягин Б. В.  Коллоидн. ж. 1962 т. 24, с. 480.

50.§ Дерягин Б. В., Мартынов Г. А., Гуn Ю. В.  Там же 1965, т. 27, с. 357.

51.§ Дерягин Б. В., Гуn Ю. В.  Там же 1965 т 27 с. 674.

52.§ Derjaguin В. V.  J. Coll. Interface Sci.  1967 v.24 p. 357.

53.§ Русанов Л. Я.  Коллоидн. ж., 1966, т. 28 с. 718-1967, т. 29, с. 141, 237.

54.§ Sheludko A., Radoev В., Kolarov T.  Trans. Faraday Soc., 1968, v. 64, p. 2213.

55.§ Русанов А. И.  ДАН СССР, 1972, т. 203, с. 387.

56.§ Rusanov A, I.  J. Coll. Interface Sci., 1975, v.53, p. 20.

57.§ Дерягин Б. В., Чураев Н.В.   Коллоидн. ж., 1976, т. 38, с. 438.

58.Kuni F.M., Shchekin A.K., Rusanov A.I., Widom B.  Role of surface forces in heterogeneous nucleation on wettable nuclei.  Advances in Colloid and Interface Science, 1996, v.65, p.71-124.


[1] Хоксби был демонстратором в Королевском обществе, и его опыты повлияли на содержание весьма пространного сочинения о первичных частицах вещества и силах между ними, которым Ньютон завершил издание своей «Оптики» 1717 года. см.

[2] К 1819 г. он был занят детальным обсуждением межмолекулярных сил отталкивания, которые, хотя и приписывались еще теплоте или теплороду, обладали существенным свойством уменьшаться с расстоянием быстрее, чем силы притяжения.

[3] Юнг упоминал наличие градиента плотности в конечном по толщине слое, но отбросил этот эффект, посчитав его несущественным.


© Ссылка приведена по [2].

¨ Ссылка приведена по [9].

§ Ссылка приведена по [14].

Стр: 2
 [D&L1]

Стр: 1
 [D&L2]


Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.