Рефераты. Когрентність другого порядку як об’єкт експериментального дослідження







2.2 Дослід Брауна-Твісcа


У цьому досвіді була вивчена кореляція інтенсивності в світловому пучку. Світловий потік S (рис. 2.1) розділяється напівпрозорою пластиною А на дві частини, які прямують до фотоприймачів П1 і П2, проходячи різні довжини доріг.


Рис. 2.1 Дослідження Брауна і Твісса взаємозалежність кореляції інтенсивності від τ


Струм від приймачів, пропорційний світловому потоку, прямує в корелятор K, де у відповідних електричних ланцюгах виробляється струм, рівний твору сил струмів. Вимірюваною величиною є


 (2.15) .


Оскільки , тут справа йде про кореляційну функцію четвертого порядку відносно напруженості поля. На рис. 2.1, була змальована залежність , знайдена в дослідах Брауна і Твісса, При дуже малих т значення  близько до одиниці, при збільшенні т воно зменшується. При більших т функція  практично постійна.

Для пояснення такої поведінки  необхідно прийняти до уваги флуктуації інтенсивності світлового пучка. Якби флуктуації не було, то при всіх значеннях τ було б  = 1. Проте за наявності флуктуації ситуація міняється. Для флуктуації можна визначити характерний масштаб часу. Якщо τ менше характерного часу флуктуації, то в кореляторі весь час реєструються приблизно однакові сили струмів і  близька до одиниці. При збільшенні τ кореляція між силами струмів в кореляторі порушується, максимуми ока в одному каналі потрапляють на мінімуми в іншому і т. д., внаслідок чого  зменшується. Коли τ перевершує характерний для флуктуації час, його збільшення не вносить вимірів до співвідношення струмів в каналах і значення  залишається постійним. Функція  дає інформацію про статистичні властивості випромінювання.


2.3 Лічба фотонів


Фото́н (грец. Φωτόνιο)— квант електромагнітного поля, елементарна частинка, що є носієм електромагнітної взаємодії.

Характеристики

Фотони не мають електричного заряду і маси спокою. Їхні основні характеристики: енергія, зв'язана з частотою за допомогою формули і спін рівний одиниці. Фотон є істинно-нейтральною частинкою, що означає, що його античастинка є тим самим фотоном.

Маса фотона може бути визначена з виразу для його енергії, або частоти


,


де c — швидкість світла у вакуумі. Завдяки цій масі фотон взаємодіє з гравітаційним полем.

Імпульс фотона визначають за формулою



Фотони видимого світла мають енергії в діапазоні від 1,7 до 3 еВ; вони появляються при переходах атомів і молекул із збуджених станів в стани з меншою енергією. Гамма-фотони появляються в результаті аналогічних процесів, що відбуваються в середині атомних ядер. При гальмуванні електронів високих енергій можуть бути отримані фотони дуже великих енергій — до 1000 МеВ, що майже в 2 000 разів перевищує власну енергію нерухомого електрона. Фотони високих енергій можуть перетворитися в пару заряджених частинок - електрон й позитрон. При цьому енергія фотона, що зникає, повинна бути більшою за суму власних енергій частинок, що з'явилися.

Зареєструвати один електрон, що вийшов з фотокатода, практично неможливо (1 фотоелектрон в секунду відповідає струму 1.6 • 10-19 А). Принциповим для техніки спостережень слабких оптичних імпульсів з'явився винахід фотоелектронного помножувача — прибору, посилення фотоструму катода, що володіє можливістю, в мільйони разів.

Кожен фотоелектрон викликає лавину електронів, що містить у момент приходу на анод ФЕУ в середньому Про електронів (Про - коефіцієнт посилення ФЕУ), із загальним зарядом еО (е - заряд електрона). Отже, 1) число лавини электронов або, інакше, імпульсів ФЕУ в одиницю часу п пропорційно потоку фотонів, 2) повний заряд, що приходить на анод в секунду (або анодний фототек), який, також пропорційний .

Ці дві обставини і визначають два основні методи реєстрації сигналу ФЕУ. Історично перший називається методом виміру постійного струму і полягає у вимірі середнього значення що протікає через навантаження RL струму.

Другий спосіб може бути реалізований при малих значеннях постійною часу tе вихідного ланцюга. В цьому випадку сигнал на опорі RL є послідовністю негативних імпульсів напруги тривалістю t з середньою амплітудою . Кожен такий імпульс може бути окремо виявлений, а значить, підраховано їх загальне число за одиницю часу. Цей спосіб реєстрації називається методом рахунку фотонів. Важливою особливістю цього методу є неминуча наявність критерію виявлення імпульсу. Звичайно це так звана дискримінація, тобто порівняння електричного сигналу з деяким пороговим рівнем Т, перевищення якого інтерпретується як наявність придатного для подальшої реєстрації імпульсу.

Метод рахунку фотонів володіє рядом переваг: лінійність у великому діапазоні вимірюваних інтенсивностей, висока точність (досяжна точність, при якій помилка виміру визначається лише статистичними флуктуаціями потоку фотонів, оскільки всі фотони "зважають" на однакову статистичну вагу), зручність для подальшої обробки і видачі інформації, можливість зменшення темнового струму за рахунок відбору темнових імпульсів по амплітуді.

Залежність вихідного сигналу ( швидкості рахунку n, імп/с ) від напруги живлення називається рахунковою характеристикою фото помножувача (рис. 2.1, а).

Інша важлива характеристика ФЕУ - амплітудний розподіл вихідних імпульсів п(А), де п — число імпульсів та виході ФЕУ з амплітудою від А до. На рис. 2.1, би приведені типові залежності п(А) для сигнальних і темнових імпульсів (криві 1 і 2 відповідно).

Поведінка функції від 0 до А1 визначається імпульсами, які виникають в результаті термоемісії електронів з дінодів. Для А > А1 залежність n(А) визначається в основному імпульсами, які виникають в результаті посилення катодних термоелектронів. В цьому випадку n(А) має вигляд розподілу Пуассона з серед їй амплітудою А2 . Якщо встановити на виході ФЕУ порогову схему (дискримінатор), яка не пропустить імпульси з амплітудою А < = А1, то можна позбавитися від імпульсів динодів. Амплітудний розподіл імпульсів п(А) є диференційною характеристикою, тобто, де N (А) — число імпульсів з амплітудою, меншою чим А.


Рис. 2.2. Рахункова характеристикам амплітудний розподіл вихідних імпульсів ФЕУ


Якщо виміряти на виході ФЕУ число імпульсів, які пройшли порогову схему з рівнем дискримінації , то, змінюючи, можна отримати, вельми схоже по формі на дзеркальне віддзеркалення рахункової характеристики. При цьому точка Аі відповідатиме мінімуму похідної, а точка А2 — максимуму.

Рахункову характеристику можна вважати аналогом амплітудного розподілу. Рахункова характеристика знімається при постійному рівні дискримінації, але при напрузі живлення, що змінюється, а амплітудні розподіли - навпаки: при, але при змінюються амплітуди імпульсів на виході ФЕУ визначаються середнім коефіцієнтом посилення Ку ФЕУ. По рахункових характеристиках (лінійна ділянка II) вибирається робоча напруга живлення ФЕУ ін.

3. Явища в квантовій оптиці які базуються на когерентності 2-го порядку

Інтерференція світла

Досі ми розглядали поширення в тій чи іншій частині простору однієї світлової хвилі. Та часто в одній і тій самій частині простору поширюються одночасно світлові хвилі від двох або кількох джерел світла. Наприклад, коли в кімнаті горить одночасно кілька ламп, то окремі світлові хвилі накладаються одна на одну. Що при цьому відбувається? Очевидно в кожній точці простору виникає складне електромагнітне коливання, яке е результатом додавання коливань кожної хвилі окремо.

Найпростіше з'ясувати, що відбувається при накладанні двох хвиль, на прикладі хвиль на поверхні води. Аналогічне явище спостерігатиметься і у випадку світлових хвиль.

Прикріпимо до коливної пластинки на певній відстані один від одного два стерженьки, які будуть одночасно ударяти по поверхні води у ванні, створюючи дві кругові хвилі однакової довжини. В результаті накладання цих хвиль ми побачимо. в деяких місцях вода спокійна, тобто накладання хвиль від двох джерел веде до ліквідації коливань її поверхні; в інших місцях поверхня води коливається сильніше, ніж у випадку одного джерела — тут накладання хвиль від двох джерел веде до збільшення амплітуди коливань. Звернути увагу, що місця підсилених і послаблених коливань розміщені на поверхні води не хаотично, а в певному порядку. Така картина чергування максимумів і мінімумів коливань називається інтерференційною картиною, а явище підсилення коливань в одних точках середовища, де поширюються хвилі, і послаблення в інших, яке є результатом накладання одна на одну хвиль однакової довжини, а, отже, однакової частоти, називається інтерференцією хвиль.

З'ясуємо походження інтерференційної картини — чому при накладанні хвиль в одних місцях виникає послаблення коливань, а в інших — посилення. Зійшовшись у кожній точці поверхні води, одна і друга хвилі викликають коливання частинок води, визначити які для кожного окремого випадку неважко. Результуюче зміщення частинки в будь-який момент часу дорівнює геометричній сумі зміщень, які дістає частинка, беручи участь у кожному із хвильових процесів, що додаються. Нехай в даний момент часу в якомусь місці зміщення поверхні води від однієї і другої хвилі спрямовані в один бік і максимальні — обидві хвилі приходять в цю точку в однаковій фазі. Якщо хвилі зійдуться гребенями, то вода в цій точці сильно підніметься. Через півперіода (1/2 Т) гребені зміняться западинами, причому в обох хвилях одночасно, оскільки вони мають однаковий період. Поверхня води сильно опуститься. Ще через півперіода поверхня води знову сильно підніметься і т. д. Таким чином, в даному місці коливання будуть підсилені. В тих місцях, де гребені однієї хвилі сходяться з западинами іншої, тобто куди хвилі приходять в протилежних фазах, коливання будуть максимально послаблювати одне одне. Тут коливання поверхні води будуть слабкими або їх зовсім не буде, якщо амплітуди коливань в обох хвилях однакові.

Ми розглянули випадки, коли коливання джерел хвиль відбуваються в однаковій фазі, тобто гребені (чи западини) виходять з обох джерел одночасно. Аналогічну інтерференційну картину дістанемо і тоді, коли коливання джерел хвиль зсунуті за фазою на певний кут, причому значення цього зсуву весь час залишається незмінним.

Якщо ж фаза коливань одного чи обох джерел змінюється довільно, тоді в кожній точці поверхні води фази коливань то співпадають, то протилежні, коливання то підсилюються, то послаблюються, і розміщення максимумів і мінімумів безперервно змінюються. В цьому випадку спостерігається хаотичне хвилювання поверхні — стійка інтерференційна картина не спостерігається. Так само не спостерігається стійка інтерференційна картина і тоді, коли частоти коливань (періоди або довжини хвиль) обох хвиль неоднакові. В цьому випадку в кожній точці поверхні підсилення коливань змінюється їх послабленням, потім знову підсиленням і т. д. Чим сильніше відрізняються частоти коливань, тим швидше змінюється розміщення максимумів і мінімумів, і стійка інтерференція не спостерігається. Таким чином, для спостереження інтерференційної картини необхідно, щоб хвилі мали однакову частоту (період або довжину хвилі) і незмінну різницю фаз в кожній точці простору, де вони накладаються одна на одну. Такі хвилі називають когерентними. Отже, стійка інтерференційна картина спостерігається лише під час накладання когерентних хвиль.

Постає питання: як створити умови, необхідні для виникнення інтерференції світлових хвиль? Інакше кажучи, яким чином можна дістати когерентні світлові хвилі?

З повсякденного досвіду ми добре знаємо, що вмикання двох джерел світла, наприклад двох лампочок в одній кімнаті, викликає підсилення світла у всіх точках простору, і інтерференція не спостерігається. Неважко зрозуміти, що будь-які два світних тіла не можуть бути когерентними джерелами світла. Справді, світло, випромінюване світним тілом (наприклад, ниткою електролампи), є сукупністю величезної кількості електромагнітних хвиль, які випромінюються окремими атомами чи молекулами. Умови випромінювання цих частинок дуже швидко і хаотично змінюються, а тому швидко й хаотично змінюється фаза коливань. Такі джерела світла некогерентні.

Для одержання когерентних джерел світла вдаються до штучного прийому: розділяють пучок світла від одного джерела на два чи кілька пучків, які йдуть у різних напрямах, а потім знову зводять і накладають один на одного. Якщо ці частини однієї хвилі пройдуть різну відстань, то між ними виникне різниця фаз, обумовлена різницею ходу хвиль, і при накладанні хвиль повинні виникнути інтерференційні явища. Це розділення пучка на два можна здійснити різними способами. Наприклад, за допомогою біпризми. Біпризма — це дві вузькі призми, складені малими основами.

Поставимо перед біпризмою джерело S монохроматичного випромінювання, тобто випромінювання з однією строго визначеною частотою коливань. Таке випромінювання можна дістати за допомогою світлофільтра, який пропускає світло одного кольору, точніше — однієї частоти коливань. На екрані Е виникне інтерференційна картина. Вона є чергуванням світлих і темних смуг, із світлою смугою посередині. Світлі смуги інтерференції мають колір світлофільтра, встановленого перед джерелом світла.

Пояснюється виникнення інтерференційної картини так. Усі промені, які падають на праву призму, після заломлення в ній ідуть так, ніби вони вийшли з точки S1, яка є уявним зображенням джерела світла S. Аналогічно промені після заломлення в лівій призмі йдуть так, ніби вони вийшли з точки S2. Таким чином, на всій поверхні екрана відбувається накладання когерентних променів, які ніби йдуть від двох уявних і когерентних джерел світла S1 і S2 У середині інтерференційної картини проти джерела світла видно світлу смугу, оскільки в цьому місці когерентні хвилі накладаються з однаковими фазами. При віддаленні від центральної світлої смуги на екрані різниця ходу променів зростає, і коли вона досягає (1/2 l), на екрані по обидва боки від центральної світлої виникають темні смуги. Коли різниця ходу променів досягає l, на екрані виникають світлі смуги, потім при різниці ходу променів 3/2 l, — темні смуги і т. д.

Якщо на біпризму спрямувати світло якогось іншого кольору, то спостерігатиметься аналогічна інтерференційна картина, але відстані між світлими і темними смугами будуть іншими. Наприклад, при освітленні біпризми червоним світлом відстані між смугами виявляються більшими, ніж при освітленні зеленим чи синім світлом.

А що спостерігатиметься на екрані, якщо біпризму освітити білим світлом? У цьому випадку теж спостерігатиметься інтерференційна картина: в центрі буде видно білу світлу смугу, а по обидва боки від неї — кольорові смуги, забарвлені всіма кольорами райдуги. Виникнення різнокольорових смуг легко пояснити. Припустимо, що для якоїсь точки А різниця ходу променів S1А — S2А дорівнює цілому числу довжин хвиль червоного світла, а для хвиль світла іншого забарвлення ця умова не виконується. Однак для іншої точки В екрана різниця ходу променів S1В— S2В дорівнює цілому числу довжин хвиль уже зеленого світла, а для світла іншого забарвлення (в тому числі й червоного) ця умова не виконується. Для точки С різниця ходу променів дорівнюватиме цілому числу довжин хвиль вже для фіолетового світла.

Дістати когерентні світлові пучки можна за допомогою дзеркал Френеля, які являють собою два плоскі дзеркала, розміщені під кутом майже 180° одне до. Якщо на ці дзеркала спрямувати пучок світла, то він роздвоюється дзеркалами і від кожного дзеркала світло поширюється розбіжним пучком. Після відбивання обидва пучки світла накладаються один на одного і інтерферують. На екрані виникає така сама інтерференційна картина, як коли б екран освітлювався когерентними джерелами S1 і S2, уявними зображеннями джерела світла S у дзеркалах.

Дисперсія світла

Під час вивчення заломлення світла було встановлено, що заломлення на межі розділу двох середовищ пояснюється різницею в швидкостях поширення світла в цих середовищах. Показник заломлення показує, у скільки разів швидкість світла в одному середовищі більша чи менша за швидкість світла в другому середовищі. З іншого боку, явища інтерференції і дифракції свідчать про те, що кожному кольору світлових променів відповідає певна довжина хвилі. Тоді з відомої формули l = u/n випливає, що швидкість поширення світла в речовині має залежати від частоти світла n. Спробуємо з'ясувати цю залежність на досліді.

Спрямуємо вузький пучок білого світла на одну з граней тригранної призми. Заломлюючись у призмі, пучок дає на екрані видовжене зображення щілини з яскравим райдужним чергуванням кольорів — спектр. Крайніми з боку заломлюючого ребра призми виявляються промені червоного світла. Поряд з ними будуть промені оранжеві, потім жовті, далі зелені, блакитні, сині і, нарешті, фіолетові (з боку основи призми).

Поставимо на шляху променів, які пройшли крізь першу призму, другу таку саму призму, розміщену паралельно першій, але з заломлюючим кутом, поверну тим у протилежний бік. Ми дістанемо знову пучок білого світла. Такі досліди були проведені у свій час Ісааком Ньютоном, який дійшов висновку, що біле світле має складну структуру і складається із світла різних кольорів. Ньютон умовно поділив суцільний спектр на сім ділянок різних кольорів: червоний, оранжевий, жовтий, зелений, блакитний, синій і фіолетовий. Другий важливий висновок Ньютона полягав у тому, що світле різного кольору характеризується різними показниками заломлення в даному середовищі. Найбільший показник заломлення в склі мають фіолетові промені, найменший — червоні. Відомо, що різниця в показниках заломлення обумовлена різницею в швидкостях поширення хвиль. Тому можна сказати, що світло різного кольору має різну швидкість поширення в даному середовищі.

Залежність показника заломлення (а, отже, і швидкості світла) від його кольору називають дисперсією світла.

Розкладанням білого світла на кольори внаслідок заломлення пояснюється виникнення райдуги. Нехай на завислу у повітрі краплю води падає сонячний промінь. На межі повітря — вода відбувається заломлення променів. При певному куті падіння на внутрішній поверхні краплі відбувається повне відбивання променів всередину краплі. Відбиті промені, заломлюючись повторно на межі вода — повітря, виходять з краплі. Оскільки фіолетові промені заломлюються сильніше, ніж червоні, то після виходу з краплі вони розходяться: червоні промені утворюють з падаючим променем кут близько 43°, а фіолетові — близько 41°.

Сонячні промені можна вважати паралельними. Тоді виходить, що від безлічі краплинок, які містяться на поверхні конуса з кутом при вершиш aч= 43°, в око спостерігача потраплятимуть червоні промені, а від крапель з поверхні конуса з кутом при вершині aф = 41° — фіолетові. Решта кольорів райдуги розміщаються між ними.

Знання складної структури білого світла дає можливість пояснити походження різноманітних барв у природі, кольори різних тіл. Колір непрозорого тіла визначається сумішшю променів тих кольорів, які воно відбиває. Якщо тіло рівномірно відбиває промені всіх кольорів, то при освітленні білим світлом воно здається білим. Червоне тіло з падаючого на нього білого світла відбиває головним чином червоні промені, а решту поглинає; голубе тіло відбиває голубі промені і т. д.

Колір прозорого тіла визначається складом того світла, яке проходить крізь нього. Якщо, наприклад, трава й листя дерев здаються нам зеленими тому, що з усіх падаючих на них сонячних променів вони відбивають лише зелені, то зелений колір скла обумовлений тим, що воно пропускає промені лише зеленого кольору, а решту поглинає.

Властивості когерентних хвиль 2-го порядку

При дослідженні когерентних властивостей одномодових електромагнітних полів Глаубером і Тітулаєром [3.1] були встановлені ряд нерівностей для мір когерентності довільного порядку gn полей0, що мають позитивно-певне Р-представлення оператора щільності:


 [3.1]


Для загального квантового випадку Ченд [3.2] отримав нерівності у вигляді (у позначеннях Глаубера)


 [3.2]


Слід звернути увагу на те, що в загальному випадку міри когерентності не обов'язково утворюють зростаючу послідовність; крім того, в нерівності (3.2) входять не лише міри когерентності, але і ще один параметр — середнє число фотонів в моді. Цей параметр грає істотну роль: якщо значення його менше п— 1, то всі нерівності починаючи з цього номера стають тривіальними і на відповідні gn жодних обмежень немає.

Покажемо, що для мір когерентності вищих порядків загалом квантовому випадку існують сильніші нерівності, ніж нерівності (3.2). На їх основі будуть встановлені точні нижні кордони значень gn. Відзначимо, що знак рівності в (3.2) має місце лише для полів із заданим числом фотонів. Як відомо, такі доля володіють найбільшим антикореляційним ефектом. З огляду на те, що до цих пір не ясно, яким чином можна генерувати поля із заданим числом фотонів, стає очевидною важливість знаходження точного нижнього кордону можливих значень мір когерентності вищих порядків в загальному випадку. Це тим більше необхідно при визначенні мір когерентності вищих порядків, оскільки вимір їх пов'язано із значними труднощами.

За визначенням

де а - оператор знищення фотонів.

Розгляд почнемо з міри когерентності другого порядку. Утворюємо вираження наступного вигляду:


 [3.3]


де pj — діагональні матричні елементи оператора щільності р одне-модове поле в представленні чисел заповнення

до — довільне ціле число.

Знак нерівності у вираженні (3.3) виходить з позитивності кожного доданку. Співвідношення (3.3) можна переписати так:


 [3.4]

За визначенням, тоді

 [3.5]


Отримана нерівність справедлива при будь-якому до. Таким чином, міра когерентності другого порядку g2 повинна задовольняти цілій серії нетривіальних нерівностей (fe=l, 2,...), число яких визначається п. З них при заданому п потрібно вибрати таке, в якого права частина в (3.5) найбільша. Неважко показати, що для п, лежачого в інтервалі


 [3.6]


саме права частина формули (3.5) буде найбільшою. Враховуючи цю обставину, нерівність (3.5) зручно записати у вигляді


 [3.7]


де  —ціла частина п. З отриманого вираження видно, що при Δ=0, 1 (середнє число фотонів в моді рівно цілому числу) воно переходить у відому нерівність (3.2) при п=2. Порівняння отриманої нерівності (3.7) з відомим (3.2) показує, що нижній кордон можливих значень міри когерентності другого порядку для випадку, коли п — не ціле число, мається в своєму розпорядженні вищим на величину

Тим самим встановлений точний нижній кордон значень для міри когерентності другого порядку:


 [3.8]

У тому, що це є саме точний нижній кордон, можна переконатися таким чином. Поля, в яких, фізично не реалізовуються, бо інакше порушилося б співвідношення (3.3), яке повинне бути справедливым для всіх без виключення полів. В той же час поля з існують при будь-якому п. Наприклад, поле, в якого відмінні від нуля лише, є саме поле з мінімальною мірою когерентності другого порядку. Відзначимо, що при 0 і, отже, міра когерентності другого порядку може набувати будь-яких позитивних значень. На рис. 3.1 представлені нижній кордон можливих значень g2 згідно (3.2) і точний нижній кордон (3.8) (криві 1 і 2, відповідно).


Рисунок 3.1 Нижній кордон можливих значень g2


З позитивності форми вигляду


 [3.9]


слідує нерівність для міри когерентності третього порядку:


 [3.10]


Оскільки до довільно, то можна показати аналогічно тому, як це було зроблено при виводі (3.7), що максимальне значення правої частини нерівності (3.10) досягається для к==E(g2n+l). При цьому отримуємо нерівність для g3 у вигляді

 [3.11]


де . У класичній межі (п>1) (3.11) переходить в одну з нерівностей (3.1). Нескладно переконатися, що отримана нерівність (3.11) для g3 сильніша, ніж нерівність (3.2) при п=3. Відзначимо, що нерівність (3.11) не лише сильніше раніше відомого, але і встановлює нижній кордон для g3 в тих областях n де відома нерівність виявлялася тривіальною. Права частина (3.11) дає нам точний нижній кордон значень міри когерентності g3 як: функцію g2 і п. На рис. 3.2 приведені нижній кордон значень g3 згідно (2) і точний нижній кордон, розрахований по (11) (криві 1 і 2, відповідно) для полів, в яких g2—2.


Рисунок 3.2 Нижній кордон значень g3


Для міри когерентності довільного порядку виходять наступні нерівності:


 [3.12]

де  — біномінальні коефіцієнти. У зв'язку з високою мірою цілочисельного параметра до в загальному вигляді не представляється можливим вибрати таке, для якого права частина в (3.12) найбільша. Це можна зробити, лише задаючи чисельно всі менші по порядку міри когерентності і п.

При завданні лише одного параметра п нерівність для міри когерентності довільного порядку gn виглядає так:

 [3.13]


При Δ=0 або 1 (п — ціле число) (3.13) зводиться до відомої нерівності. Для п<п—1+Δ права частина в (3.13) перетворюється на нуль і відповідні gn можуть набувати будь-яких позитивних значень.


Висновок


Когерентність – погоджене протікання в просторі і в часі декількох коливальних або хвилевих процесів, при якому різниця їх фаз залишається постійною. Це означає, що хвилі (звук, світло, хвилі на поверхні води і ін.) поширюються синхронно, відстаючи одна від одної на сповна певну величину. При складанні когерентних коливань виникає інтерференція; амплітуду сумарних коливань визначає різниця фаз.

В роботі досліджувалась вплив неоднорідного в поперечному перетині пучка поглинання. Основна увага приділена дослідженню поширення когерентного і частково когерентного випромінювання 2-го порядку. Досліджені особливості прояву даного ефекту для когерентного і частково когерентного випромінювання має дуже високу актуальність.

Виконано дослідження поширення випромінювання в середовищах з непараболічним розподілом комплексної діелектричної проникності чисельними методами. Отримано рівняння для траєкторії реального геометрооптичного світла з системи променевих рівнянь для середовищ з неоднорідним розподілом уявної частини діелектричної проникності, також в дослідженні проведений аналіз отриманого рівняння. Визначені кордони застосовності наближення геометричної оптики для сильно поглинаючих неоднорідних середовищ. А також досліджується можливість застосовності методів, які не враховують додаткової рефракції випромінювання, обумовленою неоднорідністю поглинання.


Список літератури


1.                 Д.Н.Клышко. Физические основы квантовой электроники. М.:Наука, 1986.

2.                 П.В.Елютин. Теоретические основы квантовой радиофизики. М.:МГУ, 1982

3.                 Р.Лоудон. Квантовая теория света. М.:Мир, 1976.

4.                 Р.Глаубер. В сб. Квантовая оптика и радиофизика. М.:Мир, 1966.

5.                 У.Люиселл. Излучение и шумы в квантовой электронике. М.:Наука, 1972.

6.                 Д.Клаудер, Э.Сударшан. Основы квантовой оптики. М.:Мир, 1970.

7.                 Я.Перина. Когерентность света. М.: Мир,1974.

8.                 Д.Н.Клышко. Неклассический свет. УФН, т.166, №6, с.613, 1996.

9.                 Иродов И.Е. Волновые процессы. Основные законы : учебное пособие для вузов. – М., 1999.

10.            Перина Я. Когерентность света. – М., 1974.

11.            Л.Мандель, Э.Вольф. Оптическая когерентность и квантовая оптика. М.:Физматлит, 2000.

12.            М.О.Скалли, М.С.Зубайри. Квантовая оптика. М.:Физматлит, 2003.

13.            Ландсберг Г.С. Оптика - М.: Наука, 1976. - 928с.

14.            Ландсберг Г.С. Элементарный учебник физики. - М.: Наука, 1986. - Т.3. - 656с.

15.            Прохоров А.М. Большая советская энциклопедия. - М.: Советская энциклопедия, 1974. - Т.18. - 632с.

16.            Сивухин Д.В. Общий курс физики: Оптика - М.: Наука, 1980. - 751с.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.