Рефераты. Методические указания к лабораторным работам по физике (механика и термодинамика)







 

(начальная скорость правого груза была равна нулю).

После снятия кронштейном 8 грузика 11 дальнейшее движение правого груза на участке длиной S между средним и нижним кронштейнами является равномерным и осуществляется со скоростью, определяемой по формуле (51). Время прохождения этого участка



Измерив время t, можно из выражения (52) рассчитать ве­личину ускорения свободного падения:


 

Порядок выполнения работы


1. Установить средний кронштейн на расстоянии S1 = 0,1 М от верхнего кронштейна.

2. Положить на рабочий правый груз поочередно дополнительные грузики массой m1, m2, m3 и измерить для каждого случая время t равномерного движения системы на участке пути длиной S. Время t для каждого дополнительного грузика измерять три раза.

3. Установить средний кронштейн поочередно на расстоянии S1= 0,2 и 0,3M от верхнего кронштейна и снова измерить время t - прохождения системой участка равномерного движения между средним и нижним фотодатчиками для трех дополнительных грузиков.

4. Данные занести в таблицу.

5. По полученным  данным рассчитать величины скоростей равномерного движения системы для различных значений m и S1; найти значения квадратов этих скоростей.

6. Построить график зависимости квадрата скорости равномер­ного движения системы от величины пути  S1 для различных зна­чений массы дополнительных грузиков.

7. По графикам определить значения ускорений a1, a2, и a3, с которыми двигалась система на участке S1 для различных масс m1, m2, m3 дополнительных грузиков (учесть, что для равно­ускоренного движения выполняется соотношение (1.5). Результаты за­нести в таблицу.

8. Пользуясь данными таблицы, рассчитать ускорение свободно­го падения по формуле (53) для значений m1, m2, т3 и величин S1= 0,1м, S2=0,2м, S3= 0,3м.

9. Рассчитать теоретически значения ускорения системы гру­зов по формуле (50) и сравнить с экспериментально полученными данными. При расчете использовать значение g = 9,8 м/с2. Объяснить расхождение теоретических и экспериментально наблюдаемых резуль­татов.

10. Рассчитать погрешности определения ускорения свободного падения. Для расчета воспользуемся формулой (53), считая m, M точно известными величинами. Абсолютные погрешности измере­ния S и S1° считать равными 1 мм, а среднюю погрешность изме­рения времени рассчитать по данным таблицы.


Контрольные вопросы и задания

1. Рассчитайте скорости системы грузов на равномерном участке их движения, используя закон сохранения энергии, и срав­ните результат расчета со значением скорости, полученным в экс­перименте.

2. Что такое перемещение, скорость и ускорение материаль­ной точки?

3. Что такое тангенциальное и нормальное ускорения? Какое ускорение вы измеряли в данной работе?


2. ИССЛЕДОВАНИЕ ЗАКОНА СОХРАНЕНИЙ ЭНЕРГИИ И ОПРЕДЕЛЕНИЕ МОМЕНТА ИНЕРЦИИ ТЕЛА С ПОМОЩЬЮ МАЯТНИКА МАКСВЕЛЛА

 

Цель работы

 

Определить экспериментально момент инерции тая вращения.

Приборы и принадлежности Маятник Максвелла.


Описание экспериментальной установки

 

Экспериментальная установка (рис. 13) собрана на основании I. На колонке 2 прикреплены неподвижный верхний кронштейн 3 и под­вижный нижний кронштейн 4. На верхнем кронштейне находятся электромагнит 5, фотоэлектрический датчик 6 и вороток 7 для за­крепления и регулирования длины бифилярной подвески маятника.

Нижний кронштейн вместе с фотоэлектрическим датчиком 8 мож­но перемещать вдоль колонки и фиксировать в произвольно выбран­ном положении.

Маятник прибора 9 - это ролик, закрепленный на оси и под­вешенный по бифилярному способу. На ролик маятника накладываются сменные кольца 10, изменяющие таким образом момент инерции сис­темы.

Маятник с насаженным кольцом удерживается в верхнем положе­нии электромагнитом. Длина маятника определяется по миллиметровой шкале на колонке прибора. Для облегчения измерения длины маятни­ка нижний кронштейн оснащен указателем, помещенным на высоте оптической оси нижнего фотоэлектрического датчика.

Пульт управления прибором 11, снабженный миллисекундомером, установлен на основании прибора 1.


Параметры маятника:

максимальная длина - 0,41 м;

количество сменных колец - 3 шт.;

массы сменных колец - m1, m2, m3 (указаны непосредст­венно на кольцах) или

 

где I - момент инерции маятника относительно оси 0 .

Решение этого уравнения дает период свободных колебаний маят­ника


                             (75)

 

Из выражения (75) следует, что для нахождения ускорения g с помощью физического маятника необходимо измерить период коле­баний T, массу маятника m, расстояние L0 и момент инерции I. Период T и масса m измеряются с большой точностью; точность определения величин I и L0 обычно невелика.


Точное значение ускорения силы тяжести можно найти посредством оборот­ного маятника - разновидности физиче­ского маятника. Достоинство рассмат­риваемого метода - возможность исклю­чить величины I и  L0 расчетной формулы для g .

Оборотный маятник (рис. 17) состо­ит из стального стержня Е, на кото­ром укреплены опорные призмы А и С. Период колебаний маятника можно менять перемещением грузов В и D.

Во всяком физическом и, следова­тельно, оборотном маятнике можно найти такие две точки, что при последователь­ном закреплении маятника в той или другой точке период колебаний маят­ника остается неизменным. При равенстве периодов колебаний оборотного ма­ятника при закреплении его призмами А и С (рис.17)

                 (76)

где I1 и  I2  - моменты инерции маятника относительно осей, проходящих через точки  A и С : a1  a2 - расстояния от  центра тяжести до соответствующих осей качания. На основании теоремы Штейнера:


I1=I0+ma12,   I2=I0+ma22,   (77)


где I0 - момент инерции маятника относительно оси, проходящей через его  центр тяжести и параллельной оси качания.

Подставив (77) в  (76)  и исключив I0 и m, получим формулу для ускорения силы тяжести



Величина L=a1+a2 равна расстоянию между призмами и называется приведенной длиной физического маятника. Таким образом, для опре­деления ускорения силы тяжести с помощью оборотного маятника не­обходимо измерить две величины; период колебаний  Т  и приведен­ную длину  L  физического маятника, измерить которую можно пере­распределением масс маятника.


Порядок выполнения работы

1. Закрепить грузы В и D так, чтобы они находились на расстоянии 8-10 см от концов стержня.

2. Призму  A  закрепить в начале  стержня, а призму   С  - на расстоянии 35-40 см от призмы A. По шкале, нанесенной на стержне, найти  расстояние между призмами  a1+a2.

3. Закрепить маятник на вкладыше верхнего кронштейна установ­ки на призме A.

4. Нижний кронштейн установки переместить таким образом, чтобы стержень  маятника  пересекал оптическую ось фотоэлектри­ческого  датчика.

5. Отклонив маятник от положения равновесия на угол 4-5°, предоставить ему возможность совершать свободные колебания.

6. Нажать клавишу "Сброс".

7. После подсчета 10 полных колебаний нажать клавишу "Стоп".

8. По данным измерений количества периодов n и полного времени колебаний маятника t найти период


T=t/n


9. Для различных положений h  груза D на стержне оборотного маятника Е рассчитать периоды колебаний маятника Тi в соответствии с пп. 5-8. При этом положение груза B остается постоянным.

10. Подвесить маятник на призму С.

11. Выполнить указание п. 4.

12. Определить периоды колебаний оборотного маятника для различных положений груза  D на стержне Е в тех же пределах и с тем же числом измерений,

13. По данным таблицы построить на миллиметровой бумаге графики зависимостей периодов  T1, и T2 от положения груза D на стержне. Точка пересечения кривых определит местонахождение под­вижного груза D , при котором значения периодов будут равны (Т1=Т2 =T).

14. Для этого положения груза  D  в соответствии с пп. 5-8 найти период колебаний маятника относительно призм  A и С. Полученные данные занести в таблицу.

15. Рассчитать по формуле (78) ускорение свободного падения.


Контрольные вопросы и задания

1. Что называется ускорением силы тяжести? Как оно направ­лено?

2. От чего зависит ускорение силы тяжести?

3. Что такое свободное падение тел?

4. Дайте определение физического маятника.

5. Выведите формулу для периода колебаний физического маят­ника.

6. Что такое приведенная длина физического маятника?

7. Дайте определение момента.инерции тела.

8. Чему равен момент инерции обруча, диска, шара и стержня . относительно центра масс?

9. Сформулируйте теорему Штейнера.

10. Выведите и сформулируйте основное уравнение динамики вращательного движения.

11. Выведите математическое выражение закона сохранения момента импульса.

12. Как определить направление момента силы и момента импульса?


4. ОПРЕДЕЛЕНИЕ МОМЕНТОВ ИНЕРЦИИ ТВЕРДОГО ТЕЛА С ПОМОЩЬЮ КРУТИЛЬНОГО МАЯТНИКА

 

Цель работы

Определить моменты инерции твердого тела.

 

Приборы и принадлежности

Крутильный маятник, набор тел различной формы и массы.


Описание экспериментальной установки

К основанию крутильного маятника (рис.18) прикреплены миллисекундомер 2 и колонна 3. На последней с помощью прижимных вин­тов закреплены кронштейны 4-6. Кронштейны 4 и б имеют зажимы, служащие для .закрепления стальной проволоки, на которой подвешена рамка 7, а на кронштейне 5 находится стальная плита 8. На ней раз­мещены фотоэлектрический датчик 9 и электромагнит 10. Конструкция рамки позволяет закреплять к ней тела различной формы 11. Эти тела крепятся в рамке подвижной планкой, а планка затягивается гайками на зажимных втулках.


Работа с прибором

1. Включить питающее напряжение нажатием клавиши "Сеть". При этом должны светиться лампочки фотоэлектрического датчика и индикатора секундомера.

2. Нажать клавишу "Сброс". Это вызывает зануление индикато­ра секундомера, генерирование сигнала разрешения на измерение и включение обмотки электромагнита.

3. Повернуть рамку прибора так, чтобы стрелка рамки была фиксирована электромагнитом.

4. Нажать клавишу "Пуск". Нажатие этой клавиши отключает электромагнит, рамка опускается и совершает крутильные колеба­ния. Миллисекундомер при этом отсчитывает число и время колебаний.

5. После совершения рамкой определенного числа колебаний систему остановить нажатием кнопки "Стоп". Показания индикатора времени занести в таблицу. Время измеряется три раза при одном и том же числе колебаний.

6. Изменив момент инерции системы путем установки в рамку цилиндра или исследуемого тела, снова нажимаем клавишу "Сброс" и проводим измерения числа колебаний и времени по пп. 3-5.

С учетом данных (масса цилиндра т и диаметр d) рас­считывают   момент инерции цилиндра 10.

Теоретическое введение

Момент силы, который действует на тело, закрепленное в крутильном маятнике,


 

где К - коэффициент жесткости нити подвеса, зависящий от мате­риала нити и ее геометрических размеров - длины и диаметра. Знак "-" отражает противоположную направленность момента упругой силы нити и угла ее деформации. Записав основное уравнение динамики вращательного движения с учетом (79), получим


 

где I  - момент инерции тела, совершающего крутильные колеба­ния. Решая уравнение (80),найдем период колебаний


 

Если вращающееся тело - составное (рамка с закрепленным в ней исследуемым телом), то I=Ip+Im, где Ip, Im - момен­ты инерции рамки и исследуемого тела соответственно. Поэтому период колебаний рамки с закрепленным в ней исследуемым телом


 

Из формулы (82) следует, что для нахождения момента инерции тела Im измеренной величине Т2  необходимо знать момент инерции рамки  Ip и коэффициент жесткости нити подвеса к, т.е. нужны два дополнительных измерения:

I)                      определение периода колебаний  10 рамки прибора (без дополнительных грузов). В соответствии с (81)

II)                    

 

2) определение периода колебаний Т1 рамки прибора с за­крепленным в ней талом, момент инерции которого известен. Например, цилиндр с моментом инерции I0=mr2/2, где m и r - масса и радиус цилиндра:



Решая совместно (83) и (84), находим величины - Iр и К  по измеренным периодам колебаний T0 и T1.   После подстановки значений Ip и К в (84) получаем:


 

Порядок выполнения работы

1. Определить периоды колебаний рамки T0  и рамки T1 с исследуемым телом. При выполнении работы необходимо измерить моменты инерции тела относительно его трех главных осей.

2. Данные занести в таблицу.

3. По полученным       значениям определить по формуле (85) моменты инерции исследуемого тела относительно трех главных осей.


Контрольные вопросы и задания

1. Что такое момент инерции твердого тела? Какова размерность момента инерции в СИ?

2. Запишите основное уравнение динамики вращательного движения:

а) в дифференциальной форме; б) в проекции на неподвижную ось.

3. Чему равна угловая частота колебаний крутильного маятника?

4. Сформулируйте теорему Штейнера.



5. ИЗУЧЕНИЕ ОСНОВНОГО ЗАКОНА ДИНАМИКИ ЕРАЩАТЕПЬНОГО ДВИДЕНИЯ НА КРЕСТООБРАЗНОМ МАЯТНИКЕ ОБЕРБЕКА

 

Цель работы

Изучить основной закон динамики вращательного движения


Приборы и принадлежности

Маятник Обербека, набор грузов.


Описание экспериментальной установки

На вертикальной колонне 1 (рис. 19), установленной на основа­нии 2, укреплены: кронштейны - нижний неподвижный 3 и верхний подвижный 4 и две неподвижные втулки – нижняя 5 и верхняя 6. На верхней втулке 6 закреплен подшипниковый узел диска  7. Через не­го перекидывается нить 8. На одном конце нити крепятся грузы 9, а второй конец фиксируется к двухступенчатому диску 10.

На нижней втулке 5 находится подставка II, к которой при­креплен тормозной электромагнит, удерживающий с пометой фрикци­онной муфты крестовину с грузом в состоянии покоя. Подвижной крон­штейн 4 перемещается вдоль колонны и его можно фиксировать в любом положении, изменяя таким образом длину пути, проходимую грузами 9.

На колонну нанесена миллиметровая шкала 12. На подвижном 4 и неподвижном 3 кронштейнах закреплены фотоэлектрические датчики. дающие сигналы для измерения времени и включающие тормозной элект­ромагнит, когда грузы достигнут резинового амортизатора 13, ограни­чивающего их движение. На основании прибора расположен миллисекундомер, фиксирующий время прохождения грузами определенного расстоя­ния.


Работа с прибором

1. Закрепить (или снять) грузы на крестовине при отключен­ной питании прибора. Проверить правильность намотки нити на вращающийся двухступенчатый диск.

2. Поднять грузы 9 массой m (рис.19), вращая крестовину, на определенную высоту так, чтобы основание грузов совпадало с риской на верхнем фотоэлектрическом датчике.

3. Включить клавишу "Сеть". Отжать клавишу "Пуск". При этом включается блокирующее устройство и грузы фиксируются в первона­чальном состоянии.

4. Включить клавишу "Пуск". При этом отключается электромаг­нит, фиксирующий систему грузов, и запускается миллисекундомер. Когда грузы пересекут луч второго фотокатода, отключается милли­секундомер и включается электромагнит, тормозящий движение грузов. Показания миллисекундомера занести в таблицу.

5. Нажать клавишу "Сброс". При этом очищается от показаний миллисекундомер и освобождается блокирующее устройство, позволяю­щее передвигать грузы в исходное положении.

6. Поднять грузы на определенную высоту в соответствии с п. 2, отжать клавишу "Пуск". Состояние грузов снова будет зафик­сировано.

7. Нажать клавишу "Пуск". Повторить измерения времени движе­ния грузов между верхним и нижним датчиками.


Порядок выполнения работы

Определение момента инерции крестовины.

1) Снять грузы с крестовины маятника. Измерить время движе­ния груза массой m01. Повторить опыт три раза. Найти среднее значение времени падения груза. Повторить эксперимент, изменяя массу подвижных грузов (использовать грузы m01 = 54,5 г; m02 = 54,5 + 40 г, m03 =  54,5 + 40 + 239 г).

2) Определить ускорение, с которым двигался подвижный груз:


 

Высоту падения грузов измерить по шкале, укрепленной на колонне.

3) Найти угловое ускорение двуступенчатого диска



где r = 4,3 см - радиус большой ступени диска; r = 2,4 см - радиус малой ступени.

4) Вычислить момент сил, действующих на диск для трех значений: m01, т02, т03 по формуле:


M=m0(g-a)r2,   (88)


5) Все данные измерений и вычислений занести в таблицу.

6) Построить зависимость  М от E по полученным данным. По графику определить момент инерции I0  крестовины без грузов на ней.


Определение моментов инерции грузов

1. Установить четыре груза на расстоянии R от оси враще­ния крестовины (расстояние между насечками на крестовине 1 см). Измерения провести для трех значений R.

2. Определить момент инерции системы Ic;  путем измерения времени падения грузов  m0 при одном значении   m0. Повторить опыт три раза, расчет  ic выполнить по формуле:

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.