Рефераты. Методы и средства контактных электроизмерений температуры






Недостатком подобных устройств является необходимость в источнике тока для питания моста и появление дополнительной погрешности, обусловленной изменением напряжения этого источника.

Погрешность, обусловленная изменением температуры линии, термопары и указателя. В термоэлектрических термометрах для измерения термо‑э.д.с. применяют как обычные милливольтметры, так и низкоомные компенсаторы с ручным или автоматическим уравновешиванием на .предел измерения до 100 мВ.

В тех случаях, когда термо‑э.д.с. измеряется компенсатором, сопротивление цепи термо‑э.д.с., как известно, роли не играет. В тех же случаях, когда термо‑э.д.с. измеряется милливольтметром, может возникнуть погрешность, обусловленная изменением сопротивлений всех элементов, составляющих цепь термо‑э.д.с.; поэтому необходимо стремиться к постоянному значению сопро­тивления проводов и самой термопары.

В отечественных термоэлектрических термометрах при их градуировке учитывается сопротивление внешней относительно милливольтметра цепи, т. е. проводов и термопары (Rпр + RТП), равное 5 Ом. Регулировка сопротивления этой внешней цепи осуществ­ляется при помощи добавочной катушки сопротивления из манганина непосредственно при монтаже прибора.

Паразитные термо‑э.д.с. возникают вследствие наличия неод-нородностей в материалах и по данным, приведенным в работе, могут составлять для различных материалов 10—100 мкВ. В частности, для платиновой проволоки при протяженности распреде­ления температуры 30 мм и температурном градиенте 30 К/мм величина паразитной термо‑э.д.с. составляет 10 мкВ.


1.3. РАЗНОВИДНОСТИ ТЕРМОРЕЗИСТОРОВ, ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ, ОСНОВЫ РАСЧЕТА

Для измерения температуры применяют металлические и полу­проводниковые резисторы. Большинство химически чистых металлов обладает положительным температурным коэффициентом сопротивления (ТКС), колеблющимся (в интервале 0—100° С) от 0,35 до 0,68 %/К.

Для измерения температур используются материалы, обладающие высокостабильной ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до + 650° С выражается соотношением RТ = R0 (1 + AΘ + BΘ2), где R0 сопротивление при 0° С; Θ — температура в градусах Цельсия. Для платиновой проволоки, применяемой в промышленных термометрах сопротивления, A = 3,96847∙10-12 1/К; В = — 5,847∙107 1/К2. В интервале от 0 до — 200° С зависимость сопротивления платины от температуры имеет вид Rт = R0 [1 + AΘ + ВΘ2 + С (Θ — 100)3], где С = — 4,22∙1012 1/К3.

При расчете сопротивления медных проводников в диапазоне от — 50 до + 180° С можно пользоваться формулой RТ = R0 (1 + aΘ), где a = 4,26∙103 1/К.

Если для медного терморезистора требуется определить сопротивление RT2 (при температуре Θ2) по известному сопротивлению RT2 (при температуре Θ1), то следует пользоваться формулой

или более удобным соотношением

где Θ = 1/a — постоянная, имеющая размерность температуры и равная Θ0 = 234,7° С (по физическому смыслу Θ0 — это такое значение температуры, при котором сопротивление меди должно было бы стать равным нулю, если бы ее сопротивление уменьшалось все время по линейному закону, чего нет на самом деле).

В значительной степени сопротивление металлов зависит от их химической чистоты и термообработки. ТКС сплавов обычно меньше, чем у чистых металлов, и для некоторых сплавов может быть даже отрицательным в определенном температурном диапазоне.

Выбор металла для терморезистора определяется в основном химической инертностью металла к измеряемой среде в интересующем интервале температур. С этой точки зрения медный преобразователь можно применять только до температур порядка 200° С в атмосфере, свободной от влажности и коррелирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен — 50° С хотя при введении индивидуальной градуировки возможно их применение вплоть до — 260° С.

Промышленные платиновые термометры используются в диапазоне температур от —200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от —264 до +1000° С.

Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250—300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.

Высокий ТКС имеют вольфрам и тантал, но при температуре свыше 400° С они окисляются и применяться не могут. Для низкотемпературных измерений хорошо зарекомендовали себя некоторые фосфористые бронзы. Кроме того, для измерений низких температур находят применение индиевые, германиевые и угольные терморезисторы.

Некоторые характеристики металлов, используемых в терморезисторах, приведены в табл. 3.


Таблица 3:

Материал

 

ТКС в диапазоне 0-100°С

 

Удельное сопротивление при 20 °С, Оm∙mm2/m

Температура плавления, °С

 

Термо-э.д.с. в паре с медью (0-500 °С), мкВ/К

Платина

0,0039

0,105

1773

7,5

Медь

0,00427

0,017

1083

о

Никель

0,0069

0,08

1455

22,5

Вольфрам

0,0048

0,055

3410

0,5


Погрешности, возникающие при измерении температуры термометрами сопротивления, вызываются нестабильностью во времени начального сопротивления термометра и его ТКС, изменением сопротивления линии, соединяющей термометр с измерительным прибором, перегревом термометра измерительным током.

Термометры сопротивления относятся к одним из наиболее точных преобразователей температуры. Так, например, платиновые теоморезисторы позволяют измерять температуру с погрешностью порядка 0,001° С.

Полупроводниковые терморезисторы отличаются от металлических меньшими габаритами и большими значениями ТКС.

ТКС полупроводниковых терморезисторов (ПТР) отрицателен и уменьшается обратно пропорционально квадрату абсолютной температуры: a = B/Θ2. При 20° С величина ТКС составляет 2—8 проц/К.

Температурная зависимость сопротивления ПТР (рис. 7, кривая 2) достаточно хорошо описывается формулой RT = AeB/Θ, где Θ — абсолютная температура; А — коэффициент, имеющий размерность сопротивления; В — коэффициент, имеющий размерность температуры. На рис. рис. 7 для сравнения приведена температурная зависимость для медного терморезистора (кривая 1). Для каждого конкретного ПТР коэффициенты А и В, как правило, постоянны, за исключением некоторых типов 1 ПТР (например, СТ 3-14), для последних В может принимать два разных значения в зависимости от диапазона измеряемых температур.

Если для применяемого ПТР не известны коэффициенты А и В, но известны сопротивления R1 и R2 при Θ1 и Θ2, то величину сопротивления и коэффициент В для любой другой температуры можно определить из соотношений

'

Конструктивно терморезисторы могут быть изготовлены самой разнообразной формы. На рис. 8 показано устройство нескольких типов терморезисторов. Терморезисторы типа ММТ-1 и КМТ-1 представляют собой полупроводниковый стержень, покрытый эма­левой краской с контактными колпачками и выводами. Этот тип терморезисторов может быть использован лишь в сухих помещениях.,

Терморезисторы типов ММТ-4 и КМТ-4 заключены в металли­ческие капсулы и герметизированы, благодаря чему они могут быть использованы в условиях любой влажности и даже в жидкостях, ие являющихся агрессивными относительно корпуса терморезистора.

Особый интерес представляют миниатюрные полупроводниковые терморезисторы, позволяющие измерять температуру малых объектов с минимальными искажениями режима работы, а также температуру, изменяющуюся во времени. Терморезисторы СТ1-19 и СТЗ-19 имеют каплевидную форму. Чувствительный элемент в них герметизирован стеклом и снабжен выводами из проволоки, имеющей низкую теплопроводность. В терморезисторе СТЗ-25 чувствительный элемент также помещен в стеклянную оболочку, диаметр которой доведен до 0,5—0,3 мм. Терморезистор с помощью выводов прикреплен к траверсам.

Рис. 8

 

В табл. 4 представлены основные характеристики некоторых ПТР. В графе «номинальные сопротивления» приведены крайние значения рядов номинальных сопротивлений, нормируемых для большинства ПТР при 20° С. Исключение составляют ПТР типов


Таблица 4

Тип ПТР

Номинальное сопротивление, кОм

Постоянная В,

K∙1012

Диапазон рабочих температур,

Коэффициент рассеяния, мВт/К

Постоянная времени (нe более), с

КМТ-1

.22—1000

36—72

От —60 до +180

5

85

ММТ-1

1—220

20,6—43

От —60 до +125

5

85

СТЗ-1

0,68—2,2

28,7—34

От —60 до +125

5

85

КМТ-4

22—1000

36—72

От —60 до +125

6

115

ММТ-4

1—220

20,6—43

От —60 до +125

6

115

ММТ-6

10—100

³20,6

От —60 до +125

1,7

35

СТЗ-6

6,8—8,2

20,5-24

От —90 до +125

1,6

35

КМТ-10

100—3300

³36

0—125

 

 

КМТ-1 Оа

100—3300

³36

0-125

1

75

КМТ-11

100—3300

³36

0—125

0,8

10

СТ4-2

2,1—3,0

34,7—36,3

36,3—41,2

От —60 до +125

36

 

СТ4-15

1,5-1,8

23,5—26,5

29,3—32,6

От -60 до +180

36

КМТ-17 (а, б)

0,33—22

36—60

От —60 до +155

2

30

КМТ-17в

0,33—22

36—60

От —60 до +100

2

30

СТ1-17

0,33—22

36—60

От —60 до +100

2

30

СТЗ-17

0,033—0,33

25,8—38,6

От —60 до +100

3

30

СТ4-17

1,5—2,2

32,6—36

От —80 до +100

2

30

КМТ-14

0,51—7500

41—70

От —10 до +300

0,8

60

СТЗ-14

1,5-2,2

26—33

27,5—36

От —60 до +125

1,1

4

СТ1-18

1,5—2200

40,5—90

От —60 до +300

0,2

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.