|
Обозначим линейное увеличение, даваемое объективом, через n1, а окуляром через n2, это значит, что = n1 и = n2 ,
где P'Q' – увеличенное действительное изображение предмета;
PQ – размер предмета;
P''Q'' - увеличенное мнимое изображение предмета;
n1 – линейное увеличение объектива;
n2 – линейное увеличение окуляра.
Перемножив эти выражения, получим = n1 n2 ,
где PQ – размер предмета;
P''Q'' - увеличенное мнимое изображение предмета;
n1 – линейное увеличение объектива;
n2 – линейное увеличение окуляра.
Отсюда видно, что увеличение микроскопа равно произведению увеличений, даваемых объективом и окуляром в отдельности. Поэтому возможно построить инструменты, дающие очень большие увеличения – до 1000 и даже больше. В хороших микроскопах объектив и окуляр - сложные.
Окуляр обычно состоит из двух линз объектив же гораздо сложнее. Желание получить большие увеличения заставляют употреблять короткофокусные линзы с очень большой оптической силой. Рассматриваемый объект ставится очень близко от объектива и дает широкий пучок лучей, заполняющий всю поверхность первой линзы. Таким образом, создаются очень невыгодные условия для получения резкого изображения: толстые линзы и нецентральные лучи. Поэтому для исправления всевозможных недостатков приходится прибегать к комбинациям из многих линз различных сортов стекла.
В современных микроскопах теоретический предел уже почти достигнут. Видеть в микроскоп можно и очень малые объекты, но их изображения представляются в виде маленьких пятнышек, не имеющих никакого сходства с объектом.
При рассматривании таких маленьких частиц пользуются так называемым ультрамикроскопом, который представляет собой обычный микроскоп с конденсором, дающим возможность интенсивно освещать рассматриваемый объект сбоку, перпендикулярно оси микроскопа.
С помощью ультрамикроскопа удаётся обнаружить частицы, размер которых не превышает миллимикронов.
Телескоп (Зрительные трубы)
Простейшая зрительная труба состоит из двух собирающих линз. Одна линза, обращенная к рассматриваемому предмету, называется объективом, а другая, обращенная к глазу наблюдателя - окуляром.
Объектив L1 дает действительное обратное и сильно уменьшенное изображение предмета P1Q1 , лежащее около главного фокуса объектива. Окуляр помещают так, чтобы изображение предмета находилось в его главном фокусе. В этом положении окуляр играет роль лупы, при помощи которой рассматривается действительное изображение предмета.
Действие трубы, так же
как и лупы, сводится к увеличению угла зрения. При помощи трубы обычно
рассматривают предметы, находящиеся на расстояниях, во много раз превышающих её
длину. Поэтому угол зрения, под которым предмет виден без трубы, можно принять
угол 2β , образованный лучами, идущими от краев предмета через оптический
центр объектива.
Изображение видно под углом 2γ и лежит почти в самом фокусе F объектива и в фокусе F1 окуляра.
Рассматривая два прямоугольных треугольника с общим катетом Z' , можем написать:
,
где 2γ - угол, под которым видно изображение предмета;
2β - угол зрения, под которым виден предмет невооруженным глазом;
F - Фокус объектива;
F1 - фокус окуляра;
Z' - половина длины рассматриваемого предмета.
Углы β и γ - не велики, поэтому можно с достаточным приближением заменить tgβ и tgγ углами и тогда увеличение трубы =,
где 2γ - угол, под которым видно изображение предмета;
2β - угол зрения, под которым виден предмет невооруженным глазом;
F - Фокус объектива;
F1 - фокус окуляра.
Угловое увеличение трубы определяется отношением фокусного расстояния объектива к фокусному расстоянию окуляра. Чтобы получить большое увеличение , надо брать длиннофокусный объектив и короткофокусный окуляр.
Рисунок 14
Телескопический ход лучей.
Светопроекционная техника
Проекционные устройства.
Для показа зрителям на экране увеличенного изображения рисунков, фотоснимков или чертежей применяют проекционный аппарат. Рисунок на стекле или на прозрачной пленке называют диапозитивом, а сам аппарат, предназначенный для показа таких рисунков, - диаскопом. Если аппарат предназначен для показа непрозрачных картин и чертежей, то его называют эпископом. Аппарат, предназначенный для обоих случаев называется эпидиаскопом.
Линзу, которая создает изображение находящегося перед ней предмета, называют объективом. Обычно объектив представляет собой оптическую систему, у которой устранены важнейшие недостатки, свойственные отдельным линзам. Чтобы изображение предмета на было хорошо видно зрителям, сам предмет должен быть ярко освещен.
Схема устройства проекционного аппарата показана на рис.16.
Источник света S помещается в центре вогнутого зеркала (рефлектора) Р. свет идущий непосредственно от источника S и отраженный от рефлектора Р, попадает на конденсор К, который состоит из двух плосковыпуклых линз. Конденсор собирает эти световые лучи на
объективе О, который уже направляет их на экран Э, где получается изображение диапозитива Д. Сам диапозитив помещается между главным фокусом объектива и точкой, находящейся на расстоянии 2F от объектива. Резкость изображения на экране достигается перемещением объектива, которое часто называется наводкой на фокус.
Спектральные аппараты.
Для наблюдения спектров пользуются спектроскопом.
Наиболее распространенный призматический спектроскоп состоит из двух труб, между которыми помещают трехгранную призму (рис. 17).
В трубе А, называемой коллиматором имеется узкая щель, ширину которой можно регулировать поворотом винта. Перед щелью помещается источник света, спектр которого необходимо исследовать. Щель располагается в фокальной плоскости коллиматора, и поэтому световые лучи из коллиматора выходят в виде параллельного пучка. Пройдя через призму, световые лучи направляются в трубу В, через которую наблюдают спектр. Если спектроскоп предназначен для измерений, то на изображение спектра с помощью специального устройства накладывается изображение шкалы с делениями, что позволяет точно установить положение цветовых линий в спектре.
При исследовании спектра часто бывает целесообразней сфотографировать его, а затем изучать с помощью микроскопа.
Прибор для фотографирования спектров называется спектрографом.
Схема спектрографа показана на рис. 18.
Спектр излучения с помощью линзы Л2 фокусируется на матовое стекло АВ, которое при фотографировании заменяют фотопластинкой.
Фотоаппарат
|
Важнейшими частями всех аппаратов являются фотокамера, объектив, устройство для фокусировки объектива, видоискатель, затвор в лентопротяжный механизм. Более совершенные фотоаппараты оснащаются дополнительно экспонометрическим устройством или встроенным экспонометром, синхроконтактом, автоспуском и другими приспособлениями.
В зависимости от типа используемого фотоматериала все фотоаппараты подразделяют на плёночные и пластиночные.
В зависимости от системы видоискателя и способа фокусировки фотоаппараты бывают дальномерные, зеркальные (одно и двухобъективные) и с простейшей фокусировкой по шкале расстояний.
Фотокамера
Светонепроницаемая камера, которая одновременно является корпусом фотоаппарата. Внутри фотокамеры монтируются основные узлы и механизмы фотоаппарата, а снаружи расположены их органы управления. Фотокамера имеет гнездо для присоединения объектива. У современных малоформатных фотоаппаратов фотокамера имеет заднюю откидную крышку. В нижней части фотокамеры сделано резьбовое гнездо для установки фотоаппарата на штатив.
Объектив
Является важнейшей частью фотоаппарата и служит для создания на светочувствительном слое фотоплёнки (фотопластинки) оптического изображения фотографируемого предмета. Объектив состоит из трёх или более линз, закреплённых в одной металлической оправе. Для уменьшения световых потерь вследствие отражения лучен от поверхностей линз последние покрывают тонкими слоями различных веществ, уменьшающих коэффициент отражения света, т. е. увеличивающих прозрачность объектива (бывают однослойные покрытия, но чаще многослойна). Такие объективы называются просветлёнными.
Основными параметрами (характеристиками) объектива являются: фокусное расстояние, угловое поле изображения, относительное отверстие и разрешающая сила.
Фокусное расстояние.
Фокусное расстояние (f') определяет размер даваемого объективом изображения, т. е. его масштаб или линейное увеличение. Чем больше фокусное расстояние, тем больше масштаб полу чаемого изображения при одном и том же расстоянии до фотографируемого предмета. Большинство фотообъективов имеет постоянное фокусное расстояние, величина которого указывается па их оправе. Некоторые фотоаппараты имеют объективы с переменным фокусным расстоянием, которое можно плавно изменять в определённых пределах. Фотообъективы, у которых фокусное расстояние примерно равно диагонали кадровой рамки фотоаппарата (1k), принято называть нормальными. Если f превышает 1k, то такие объективы называются длиннофокусными; некоторые длиннофокусные объективы называют телеобъективами. Объективы, фокусное расстояние которых меньше lk, называются короткофокусными.
Угловое поле объектива в пространстве изображений. Любой объектив образует оптическое изображение в пределах некоторого круглого по форме участка, называемого полем изображения. Качество изображения ухудшается по мере удаления от центра поля, т.е. от точки пересечения оптической оси объектива с плоскостью изображения. Поэтому при фотографировании используется не всё поле изображения, а только его центральная зона, в пределах которой качество изображения является удовлетворительным. Угол, образованный лучами, идущими из центра выходного зрачка объектива к крайним точкам полезного поля изображения, называется угловым полем объектива. Кадровая рамка фотоаппарата должна располагаться внутри полезного поля изображения. Объективы, угловое поле которых находится в пределах от 45° до 60°, называются нормальными, с углом, превышающим 60°,— широкоугольными.
Относительное отверстие объектива.
Относительное отверстие объектива — отношение диаметра его входного зрачка к фокусному расстоянию, записывается в виде 1:К, где К — диафрагменное число, показывающее, во сколько раз фокусное расстояние объектива больше диаметра его входного зрачка. Это число, называемое диафрагменным числом, наносится на шкалу диафрагм объектива. Чем больше величина относительного отверстия, тем выше освещённость оптического изображения, даваемого объективом, т. е. тем больше светосила объектива.
Разрешающая сила.
Разрешающая сила (способность) Л' выражается максимальным числом линий (штрихов), приходящихся на 1 мм в оптическом изображении специальной испытательной таблицы (миры). Чем выше разрешающая способность объектива, тем большее число мелких деталей изображается объективом раздельно.
Диафрагма.
Все съёмочные объективы имеют диафрагму — механическое устройство, служащее для изменения их относительного отверстия. Диафрагма помещается обычно между линзами объектива и содержит несколько серповидных лепестков, которые образуют, перекрывая друг друга, примерно круглое отверстие. Диаметр отверстия изменяется в соответствии с установленным по шкале значением диафрагмы К. Лепестки соединены с поворотным кольцом, смонтированным на оправе объектива. На кольце имеется индекс, смещающийся при повороте кольца относительно шкалы, деления которой рассчитаны так, что при повороте кольца на одно деление освещённость оптического изображения, образуемого объективом, изменяется в два раза. Процесс изменения относительного отверстия объектива называется диафрагмированном. При уменьшении относительного отверстия (увеличении К) наряду с понижением освещённости оптического изображения увеличивается глубина резко изображаемого пространства.
Объективы, предназначенные для зеркальных фотоаппаратов, стали делать с так называемой «прыгающей» диафрагмой. У таких объективов значение диафрагмы устанавливается заранее, но световое отверстие объектива остаётся при этом полностью открытым. Это позволяет фокусировать объектив и устанавливать границы изображения снимаемых предметов при полностью открытой диафрагме, т. е. при наибольшей его освещённости. При нажатии на спусковую кнопку затвора фотоаппарата непосредственно перед его срабатыванием механизм прыгающей диафрагмы изменяет световое отверстие (обычно скачкообразно под действием ранее взведённой пружины), после чего срабатывает фотозатвор и затем диафрагма снова полностью открывается (немедленно или в процессе перемотки фотоплёнки и взвода затвора).
Киноаппарат
Он представляет собой проекционную систему того же типа с тем усложнением, что демонстрируемые картины очень быстро сменяют одна другую.
При проектирование получается обычно сильно увеличенное изображение. Например, при проектировании кадра кинокартины размером 18х24 мм на экран с размерами 3,6 х 4,8 м линейное увеличение равно 200, а площадь изображения превышает площадь кадра в 40 000 раз.
Чтобы освещённость объекта была высокой и равномерной, важную роль играет правильный подбор конденсора. Казалось бы, что задачей конденсора является максимально сконцентрировать свет на изображаемом объекте. Однако, это совершенно неверно. Попытки "концентрации" света на объекте приводят обычно к тому, что конденсор даёт на нём сильно уменьшенное изображение источника. Если последний не очень велик, то объект будет освещён неравномерно. При этом часть светового потока пойдёт мимо проекционного объектива, т.е. не будет участвовать в образовании изображения на экране. Правильный выбор конденсора даёт возможность избежать всех недостатков. Конденсор устанавливается таким образом, чтобы он давал изображение небольшого источника С`C` на самом объективе L. Размеры конденсора выбираются с таким расчётом, чтобы весь диапозитив S был равномерно освещён. Лучи, проходящие через любую точку диапозитива, должны затем пройти через изображение источника света С`C`. Следовательно, они попадут в объектив, и по выходе из него образуют на экране изображение этой точки диапозитива.
Таким образом, объектив даст на экране изображение всего диапозитива, которое будет правильно передавать распределение светлого и тёмного на диапозитиве.
Для демонстрации на экране непрозрачных предметов, например, чертежей и рисунков, выполненных на бумаге, их сильно освещают сбоку с помощью ламп и зеркал и проектируют с помощью светосильного объектива.
Часто применяют приборы, имеющие двойную систему для проектирования прозрачных и непрозрачных предметов. Такие приборы называются эпидиаскопами.
Заключение.
Практическое значение оптики и её влияние на другие отрасли знания исключительно велики. Изобретение телескопа и спектроскопа открыло перед человеком удивительнейший и богатейший мир явлений, происходящих в необъятной Вселенной. Изобретение микроскопа произвело революцию в биологии. Фотография помогла и продолжает помогать чуть ли не всем отраслям науки. Одним из важнейших элементов научной аппаратуры является линза. Без неё не было бы микроскопа, телескопа, спектроскопа, фотоаппарата, кино, телевидения и т.п. не было бы очков, и многие люди, которым перевалило за 50 лет, были бы лишены возможности читать и выполнять многие работы, связанные со зрением.
Область явлений, изучаемая физической оптикой, весьма обширна. Оптические явления теснейшим образом связаны с явлениями, изучаемыми в других разделах физики, а оптические методы исследования относятся к наиболее тонким и точным. Поэтому неудивительно, что оптике на протяжении длительного времени принадлежала ведущая роль в очень многих фундаментальных исследованиях и развитии основных физических воззрений. Достаточно сказать, что обе основные физические теории прошлого столетия - теория относительности и теория квантов - зародились и в значительной степени развились на почве оптических исследований. Изобретение лазеров открыло новые широчайшие возможности не только в оптике, но и в её приложениях в различных отраслях науки и техники.
Список литературы.
1. Арцыбашев С.А. Физика - М.: Медгиз, 1950. - 511с.
2. Жданов Л.С. Жданов Г.Л. Физика для средних учебных заведений - М.: Наука, 1981. - 560с.
3. Ландсберг Г.С. Оптика - М.: Наука, 1976. - 928с.
4. Ландсберг Г.С. Элементарный учебник физики. - М.: Наука, 1986. - Т.3. - 656с.
5. Прохоров А.М. Большая советская энциклопедия. - М.: Советская энциклопедия, 1974. - Т.18. - 632с.
6. Сивухин Д.В. Общий курс физики: Оптика - М.: Наука, 1980. - 751с.
Страницы: 1, 2
При использовании материалов активная ссылка на источник обязательна.