Таким образом, по ходу пара пароперегреватель условно делится на пять частей
- потолочный пароперегреватель с конвективной петлей (1-я часть конвективного пароперегревателя);
- ширмовый пароперегреватель (20 ширм из V - образных труб), каждая ширма - 33 трубы с шагом 40 мм, материал- сталь 12Х1МФ, диаметром 32х4 мм;
- три ступени конвективного пароперегревателя (1,3 и 4 ступени)
Для уменьшения тепловых перекосов предусмотрена трехкратная переброска пара по ширине газохода.
Первая часть КПП 1 расположена в рассечке ширмового пароперегревателя.
Вторая часть КПП 1 - за пакетами ширмового пароперегревателя.
Третья и четвертая ступени пароперегревателя расположены за второй частью КПП 1 выполненным по прямоточной схеме относительно газов.
Пароперегреватель двухпоточный по пару (с независимым регулированием температуры пара в каждом потоке). Каждая ступень регулирования выполняется в виде двух камер пароохладителей впрыскивающего типа, с диаметром - 325 мм.
Для впрыска используется собственный конденсат, получаемый в четырех конденсаторах, расположенных на отметке барабана котла.
Конденсация насыщенного пара, поступающего из барабана, производится питательной водой после первой ступени ВЭ в установке для приготовления собственного конденсата.
После конденсаторов питательная вода поступает во вторую ступень ВЭ (по 4-м трубам диаметром 159х12 мм, материал сталь 20).
Образовавшийся конденсат собирается в сборнике конденсата и одной трубой (диаметр 133х10 мм, материал сталь 20) направляется к сниженному узлу впрыска, а затем (по 6-ти трубам) - к пароохладителям.
Потолочный пароперегреватель состоит из 174 параллельно включенных змеевиков (трубы змеевиков диаметром 38х4 мм, сталь 20, камеры диаметром 219х26 мм). Шаг между трубами 40 и 80 мм, поверхность нагрева 870 м2 (с конвективной петлей).
Змеевики потолочного пароперегревателя за 3-ей ступенью конвективного пароперегревателя образуют конвективную петлю (1-ая часть КПП).
Ширмовый пароперегреватель
Из выходных камер потолочного пароперегревателя пар поступает во входные смешивающие коллектора «холодных ширм» (по 6-ти трубам диаметром 159х16 мм).
Далее пар поступает во входные коллектора 10-ти «холодных ширм» (10 труб диаметром 133х10 мм).
Каждая ширма- это 33 параллельно включенных змеевика (диаметр 32х4 мм, сталь 12Х1МФ).
Диаметр входного и выходного коллектора ширм 159х16 мм, поверхность нагрева «холодных ширм» 312м2.
Из выходных коллекторов ширм пар поступает в пароохладитель №1 (по 10-ти трубам диаметром 133х10 мм), - где происходит снижение температуры перегретого пара и первая переброска пара по ширине газохода.
Из выходного коллектора пароохладителя пар поступает во входные смешивающие коллекторы «горячих ширм» (по 6-ти трубам диаметром 156х16 мм) и дальше - в выходные коллекторы «горячих ширм» (по 10-ти трубам диаметром 133х10 мм).
Поверхность нагрева «горячих ширм» - 312м2.
Диаметр выходного коллектора - 273х26 мм.
Из ширмового пароперегревателя пар поступает в конвективный пароперегреватель (по 6-ти трубам диаметром 156х16 мм) первой, затем второй, третьей и четвертой ступеней КПП.
С целью уменьшения тепловой и гидравлической неравномерности конвективная часть разделена на три последовательно включенные ступени, которые расположены в горизонтальном соединительном газоходе. Каждая ступень состоит из 174 пакетов параллельно включенных змеевиков, расположение змеевиков – коридорное с поперечным шагом 80 мм и продольным шагом 60 мм.
Диаметры труб:
Первая ступень (2 часть КПП 1) - 32х5 мм;
Вторая ступень (3 часть КПП) - 32х5 мм;
Третья ступень (4 часть КПП) - 32х6 мм;
Материал труб сталь 12Х1МФ.
Для выравнивания температуры пара по ширине газохода в пароохладителях №2 и №3 (после первой и второй ступеней КПП), осуществляется переброс пара по ширине газохода.
Площадь поверхности нагрева: 1 ступень - 800 м2; 2 ступень - 1340 м2; 3 и 4 ступеней - по 1025 м2.
Максимальная температура металла в обогреваемой зоне не должна превышать значений указанных в таблице.
Регулирование температуры перегретого пара
Для регулирования температуры перегретого пара предусмотрена схема с 3-мя последовательно включенными впрыскивающими пароохладителями.
Расчетное снижение температуры перегретого пара составляет:
1 впрыск - 6 °С; 2 впрыск - 11 °С; 3 впрыск - 2 °С
Температура перегрева для пароперегревателя возрастет при:
- увеличении нагрузки,
- снижении температуры питательной воды,
- увеличении избытка воздуха в топке,
- переходе на сжигание более влажного топлива,
- шлаковании экранных труб,
- затягивании факела в верх топки,
- - при переходе на сжигание более влажного топлива.
В связи с тем, что пароперегреватель котла ТП-81 имеет обширную конвективную часть, большое влияние на температуру перегретого пара оказывает величина избытка воздуха в топке.
По ходу газов первой идет 2-ая ступень – поверхность нагрева 870 м2, а затем, (после воздухоподогревателя 2 ступени); идет 1-я ступень - поверхность нагрева 2580м2.
Водяной экономайзер крепится на пустотелых балках, охлаждаемых воздухом от дутьевого вентилятора.
Для охлаждения водяного экономайзера в период пусков предусмотрена линия рециркуляции ВЭ - барабан, соединяющая входные коллекторы экономайзера с водяным пространством барабана котла.
Между выходными коллекторами 1- ой ступени и входными коллекторами 2-ой ступени смонтирована дренажная линия (опорожнение 2-ой ступени экономайзера).
Шаги труб, мм (S1 x S2): 1 ступень - 80х49; 2 ступень - 85х60
Живое сечение по газам, м2: 1 ступень - 36,8; 2 ступень - 34,0
Живое сечение по воде, м2: 1 ступень - 0,212; 2 ступень - 0,100
Поверхности нагрева м2: 1 ступень - 2580; 2 ступень – 870
Водяной экономайзер изготовлении из труб диаметром 25х3,5, материал труб сталь 20; двухступенчатая компоновка хвостовых поверхностей нагрева, т.е. пакеты водяного экономайзера и воздухоподогревателя установлены в «рассечку».
Схема пароперегревателя котла ТП-81
Воздухоподогреватель трубчатый, двухступенчатый. По ходу газов первой идет 2-ая ступень воздухоподогревателя поверхность нагрева которой 9180 м2, диаметр труб 51х1,5 мм, сталь 3. За 2-ой ступенью воздухоподогревателя следует I ступень водяного экономайзера, а далее - 1 ступень воздухоподогревателя с поверхностью нагрева 19800 м2, диаметр труб 40х1,5 мм сталь3.
Весь воздухоподогреватель изготовлен в виде отдельных секций, состоящих из труб, скрепленных трубными досками: верхняя ступень имеет 12 секций, нижняя - 24 секции.
Первая по ходу воздуха ступень выполнена шестипоточной по газу и воздуху и четырехходовой по воздуху. На рис. 8.5. представлена компоновка воздухоподогревателя котла ТП-81.
Вторая ступень - двухпоточная по газу и воздуху и одноходовая по воздуху.
Шаги труб, мм (S1 x S2)
1-я ступень 62х40,5
2-я ступень 78х51
Живое сечение по газам, м2
1-я ступень 17,8
2-я ступень 21,5
Живое сечение по воздуху, м2
1-я ступень 25,1
2-я ступень 21,8
Упрощенная схема воздухоподогревателя котла ТП-81
1-вход воздуха; 2-трубные секции; 3-перепускной короб между нижними и верхними секциями первой ступени ВП; 4-короб, направляющий воздух из первой ступени во вторую; 5-трубные секции второй ступени ВП
3. Исходные данные для расчета
Метод последовательных приближений;
Топливо: Итатское месторождение, Канско-Ачинского бассейна.
=130 0С; =230 0C; =30 0C
Расчетные характеристики камерных топок при Д≥75т/ч при сжигании твердых топлив.
Таблица 1.
Вид
Топочного
устройства
Топливо
Коэффиц.
избытка
воздуха на выходе из топки -
Допустим.
тепловая нагрузка объема по услов. горения
()
Потеря тепла от хим. недожога
Потеря тепла от механичес. недожога
Доля уноса золы из топки,
Камерная
топка с тв. удалением
шлака.
Бурый уголь
1,20
185
0
0,5-1
0,95
Присосы воздуха по газоходам:
∆αпп=0,01; ∆αвэ=0,02(на каждую ступень);
∆αвп=0,03(на каждую ступень);
∆αт=0,05; ∆αпл=0,04
Расчет объемов воздуха и продуктов сгорания
Расчет объемов воздуха и продуктов горения ведется на 1 кг рабочего топлива (твердого и жидкого) или на 1 м3 газового топлива, при нормальных условиях (0 0С и 101,3 кПа).
Теоретический объем сухого воздуха, необходимого для полного сгорания топлива при α=1 для твердого и жидкого топлив определяется по формуле Vно,в=(cr + 0,375∙sr)+0,265hr – 0,0333∙or;
Теоретические объемы продуктов горения (при α=1) для твердых и жидких топлив: = 0,0186∙(cr+0,375∙ sr);
= 0,79Vно,в+0,008∙Nr;
= 0,111∙ hr+0,0124∙Wrр+0,0161∙ Vно,в;
Vно,г = + + ;
Расчет действительных объемов продуктов сгорания по газоходам котла при избытке воздуха α >1 ведется по формулам: (сведены в табл. 5.)
Объем водяных паров
Объем дымовых газов
Объемные доли 3-х атомных газов
Безразмерная концентрация золы в дымовых газах, кг/кг
μзл=;
где аун- доля золы топлива, уносимой газами.
Масса продуктов сгорания, кг/кг
;
Расчет теоретических объемов воздуха и продуктов сгорания для барандатского угля:
Vно,в=(cr + 0,375∙sr)+0,265hr – 0,0333∙or=
0,0889∙(29,55+0,375∙0,65)+0,265∙3,86-0,0333∙19=3,038864;
= 0,0186∙(cr+0,375∙ sr)= = 0,0186∙(29,55+0,375∙0.65)= 0,55416;
= 0,79Vно,в+0,008∙Nr=0,79∙3,038864+0,008∙0,64= 2,40582;
= 0,111∙ hr+0,0124∙Wrр+0,0161∙ Vно,в= 0,960986;
Vно,г = + + =0,55416+2,40582+0,960986=3,920966;
Энтальпия воздуха и продуктов сгорания (α=1) определяется по формулам:
· для воздуха: Ioв= Vно,в∙(С )в
· для дымовых газов:
Ioг= VRO ∙(С)СО+Vно,N ∙(С)N +Vн o,H O ∙(С) H O,
· для золы:
Энтальпия продуктов сгорания при избытке воздуха α>1 определяется по формуле: Iг = Ioг + (α -1) ∙ Ioв + Iзл,
Расчет теоретических и действительных значений энтальпий сведен в таблицу. 6.
4. Расчет тепловой баланс и КПД котла
Составление теплового баланса котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством тепла, называемым располагаемым теплом, и суммой полезно использованного тепла и тепловых потерь. На основании теплового баланса вычисляется КПД и необходимый расход оплива.
По рекомендации расчет теплового баланса ведем в форме
Таблица 3
№
п/п
Наименование величины
Обозна-
чение
Размер-
ность
Формула или обоснование
Расчет
1
Располагаемое тепло топлива
Qрр
кДж/кг
Qрр ≈ Qнr
13030
2
Температура уходящих газов
0С
Принята предварительно
130
3
Энтальпия уходящих газов
IУХ
Таблица.2.
869,7
4
Температура холодного воздуха
t0 ХВ
Задана.
30
5
Энтальпия холодного воздуха
I0ХВ
Таблица. 2.
165,328
6
Потери тепла:
от химического недожога
q3
%
[табл. 3.1.]
7
от механического недожога
q4
0,5
8
в окружающую среду
q5
[ рис. 4.1.]
0,4
9
с уходящими газами
q2
4,758
10
Доля золы в шлаке
а Ш Л
-
(1-аун)
0,05
11
Температура сухого шлака
t Ш Л
6000С
600
12
Энтальпия золы
Iзл
Форм3.3
38,836
13
Потеря с физическим теплом шлаков
q6
0,0157
14
Сумма тепловых потерь
Σqпот
q2 +q3 + q4 +q5 +q6
5,67
15
Коэффициент полезного действия котельного агрегата (брутто)
100- Σqпот
94,3
16
Давление перегретого пара за котельным агрегатом
РПП
МПа
Задано
13,8
17
Температура перегретого пара
t ПП
560
18
Энтальпия перегретого пара
iПП
3489,5
19
Температура питательной воды
t ПВ
230
20
Энтальпия питательной воды
iПВ
990,2
21
Тепло, полезно используемое в котельном агрегате
Q КА
1095,546
22
Полный расход топлива
B
(кг/с)
24,74
23
Расчетный расход топлива
Bp
24,62
24
Коэффициент сохранения тепла
0,996
Страницы: 1, 2, 3, 4, 5, 6