Рефераты. Проверим "Gedanken Experiments" Альберта Эйнштейна






Проверим "Gedanken Experiments" Альберта Эйнштейна















Проверим «Gedanken Experiments» Альберта Эйнштейна

Аннотация

Статья начинается с анализа явлений аберрации света, эффекта Доплера и явления «деформации» наблюдаемых отрезков, обусловленной искажением фронта световой волны. Эти явления можно описать и дать им непротиворечивое объяснение в рамках классических пространственно-временных отношений, опираясь на преобразование Лоренца. Показано, что Эйнштейн некорректно определил действительную скорость относительного движения инерциальных систем отсчета. Опираясь на эти результаты и постоянство скорости света в любых инерциальных системах отсчета, проанализированы «мысленные эксперименты» А. Эйнштейна. В трех из четырех «мысленных экспериментах» обнаружены физические ошибки.

Введение


Уже прошло более ста лет, но дебаты по теории относительности не прекратились по сегодняшний день. Причина в парадоксальности и логической противоречивости следствий («парадоксов»), вытекающих из СТО. Делу не помогают и гипотезы ad hos, призванные устранить противоречия (например, гипотеза об отсутствии в природе абсолютно жестких тел).

Теория относительности опирается на два постулата [1]:

1                   Все законы природы одинаковы во всех инерциальных системах отсчета. Как следствие, все инерциальные системы равноправны.

2                   Никакими экспериментами невозможно обнаружить абсолютную систему отсчета. Как следствие, скорость света в любой инерциальной системе отсчета постоянна.

Авторы различных учебников приводят различные варианты формулировок этих постулатов, сохраняя их суть. Но они «не замечают», что существует третий постулат. Он касается интерпретации пространственно-временных отношений в специальной теории относительности. Именно эйнштейновская интерпретация (объяснение) создает те «парадоксы» (точнее: логические противоречия), которые у всякого, кто стремится разобраться в сути явлений, вызывают неудовлетворение и желание переосмыслить эту теорию.

Мы вовсе не собираемся «с порога» отвергать постулаты теории относительности. Любая физическая теория имеет границы применимости. Теория относительности не исключение. По этой причине не следует рассматривать эти постулаты, как что-то «незыблемое». Это всего лишь гипотезы (предположения), которые могут быть оправданы практикой или же отвергнуты ей.

Что касается содержания понятия «практика», то оно не сводится только к эксперименту. Эксперимент всегда требует объяснения, которое невозможно без привлечения теории и гипотез. Отметим, что любая теория, как основа интерпретации, опирается на миропонимание исследователя, на его мировоззренческие позиции и немыслима без опоры на философию. Это неизбежно, как бы отрицательно ни относились некоторые ученые к этой дисциплине. Невежество не может служить аргументом, оправдывающим такую точку зрения («незнание законов не освобождает от ответственности»). Философское невежество – не исключение.

Наша цель в том, чтобы проанализировать «мысленные эксперименты» и парадоксы, найти в них слабые стороны и дать иную интерпретацию, не содержащую логических противоречий (парадоксов).


1. Способы отображения

Любое наблюдение характеристик реального процесса или характеристик материального объекта в системе отсчета наблюдателя есть отображение их в эту систему отсчета, т.е. явление. В физике в основном используются два вида отображений.

1.                  Классическое отображение. Со школьной скамьи, решая физические задачи механики, мы привыкли к тому, что положение тела в пространстве в данный момент времени отображается объективно (без каких либо искажений или запаздываний). Такое отображение опирается по своей сути на мгновенную передачу информации. Оно никогда и ни у кого не вызывало подозрений в некорректности, хотя никто и никогда не предлагал физической модели реализации этого способа.

2.                  Отображение с помощью световых лучей. Такой способ отображения предметов и процессов для человека является основным, поскольку мы постоянно используем для этой цели свое зрение. В отличие от классического способа световые лучи могут передавать информацию с искажениями. Например, мы пользуемся лупой для увеличения изображения объекта. Это связано с искажениями фронта волны. Кривые зеркала в «комнате смеха» также пример такого рода искажений. Помимо этого, движение источника светового сигнала относительно наблюдателя обуславливает явление аберрации и эффект Доплера. Таким образом, информация, доставляемая световыми лучами, может быть искажена, т.е. принимаемая информация не всегда соответствует информации, посланной источником сигнала. Она может существенно отличаться от информации, получаемой классическим способом отображения.

Однако оба способа не являются независимыми. Мы, зная скорость относительного движения систем отсчета, направление светового потока и т.д., всегда можем сделать переход (пересчет) от одного вида отображения к другому. Например, учитывая скорость распространения световых лучей, мы можем перейти от классического способа отображения к отображению явления световыми лучами. И обратно, можно всегда перейти от отображения световыми лучами к классическому отображению явлений. Это весьма важный факт.

Это положение будет служить отправной точкой наших исследований.


3.      Две относительных скорости инерциальных систем


Исследуя историю формирования теории относительности очевидно следующее. Анри Пуанкаре за год до создания А. Эйнштейном СТО дал обобщение принципа относительности Галилея. Это обобщение позже стало одним из важных принципов теории познания [2]:

«Законы физических явлений должны быть одинаковыми как для неподвижного наблюдателя, так и для наблюдателя, движущегося прямолинейно и равномерно, поскольку у нас нет возможности убедиться в том, участвуем ли мы в таком движении или нет».

Философский принцип А. Пуанкаре фактически включает в себя оба постулата А. Эйнштейна. Проблема на заре 20 века заключалась в том, как применить этот принцип к классической электродинамике и согласовать ее с классической механикой. Мы не будем здесь анализировать баллистическую гипотезу Ритца, другие эмиссионные теории и различные теории, опирающиеся на эфир.

На наш взгляд Эйнштейн интуитивно «угадал» правильное направление. Однако он так до конца не смог предложить правильное развитие идеи Пуанкаре. Мировоззренческие и физические ошибки породили СТО, полную логических противоречий (парадоксов). Конечно, каждый человек имеет право высказывать свое мнение. Но научное сообщество должно уметь четко отделять «зерна от плевел». А для этого необходимо стоять на материалистических мировоззренческих позициях и твердо опираться на материалистическую теорию познания объективной истины [3].

А. Предварительные замечания. Итак, начиная исследование, мы обозначим его отправные точки. Во-первых, мы принимаем «постулаты теории относительности» в форме, предложенной А. Пуанкаре. Во вторых, мы принимаем преобразование Лоренца как преобразование, обоснованное классической электродинамикой и соответствующее принципу Пуанкаре. В третьих, мы будем искать новую интерпретацию этих преобразований, оставаясь в рамках классических (ньютоновских) представлений о пространстве и времени. Но если возникнет необходимость, мы «откорректируем» эти представления.

Преобразование Лоренца сохраняет инвариантной форму уравнений Максвелла, которые описывают электромагнитные волны (свет). Поэтому, в первую очередь, эти преобразования применимы к световым явлениям. С них мы и начнем анализ. Преобразование Лоренца удобно выражать через приращения (интервалов времени и пространственных отрезков):


                   (1.1)


Оно связывает пространственные и временные интервалы в системе отсчета, например, источника света, с теми пространственно-временными интервалами, которые будут передаваться с помощью света в систему отсчета движущегося наблюдателя и регистрироваться в ней. Как известно, при движении точечного источника светового излучения имеют место три важных эффекта: явление аберрации света, эффект Доплера и эффект искажения фронта световой волны.

Мы начнем обсуждение с эффекта Доплера. Значение термина «Аберрация света» в Энциклопедическом словаре Брокгауза и Ефрона формулируется следующим образом:

«Аберрация света состоит в том, что мы, наблюдая звезду, видим последнюю не в том месте, где она находится, вследствие движения Земли вокруг Солнца и времени, необходимого для распространения света. Если бы Земля была недвижима или если бы свет распространялся мгновенно, то и световой аберрации не существовало бы. Поэтому, определяя положение звезды на небе посредством зрительной трубы, мы должны отсчитать не тот угол, под которым наклонена звезда, а несколько — впрочем, очень мало, как сказано ниже, — увеличив его в сторону движения Земли….».

В момент наблюдения мы будем видеть наблюдаемое («кажущееся») положение движущегося источника света. Сам же источник за время прохождения света от него к наблюдателю успеет сместиться на некоторое расстояние. Если рассматривать две инерциальные системы (система источника и система наблюдателя), то возникает вопрос: какова скорость их относительного движения? Он закономерен, поскольку наблюдаемая скорость v, связанная с видимым положением источника, может отличаться от действительной скорости его движения V.


Рис. 1


Это связано с тем, что имеет место эффект Доплера и искажение фронта излученной световой волны. Эйнштейн «прозевал» этот важный момент. Он принял наблюдаемую скорость v за относительную скорость инерциальных систем. На самом деле только скорость V является действительной скоростью относительного движения.

Наблюдаемая скорость v есть «искаженное отображение» действительной скорости в системе отсчета наблюдателя. Если скорость V является характеристикой сущности, то наблюдаемая скорость v это явление. Мы не будем здесь останавливаться на описании категорий «явление и сущность». О них мы подробно написали в работе «Аберрация света и парадокс Эренфеста» [4].

Б. Измерение скорости v. Относительную скорость движения v можно измерить разными способами. Штрихи у символов будут всегда относиться к системе отсчета, связанной с источником светового сигнала. В этой системе отсчета световой луч не испытывает аберрации, отсутствуют эффект Доплера и искажение фронта светового сигнала.

Первый способ. Он рассмотрен в [5]. В системе К' имеется неподвижный источник, который излучает короткие световые импульсы через равные интервалы времени DT'. В системе К мы будем видеть траекторию, «разделенную» этими вспышками на равные пространственные интервалы Dx, которые покоятся в системе К. Измеряя интервал времени между вспышками DT, в системе К можно определить наблюдаемую скорость движения инерциальных систем. Из (1.1) следует


        (1.2)


«Кажущейся» мы называем эту скорость потому, что мы наблюдаем в системе К «искаженный» движением интервал времени DT’.


Второй способ [5]. Мы можем в системе К' разместить линейку длиной Dx' , ориентированную вдоль скорости относительного движения инерциальных систем. В системе К траекторией движения будет прямая линия, на которой мы зафиксируем неподвижную точку. Измеряя время DT, за которое линейка проходит эту точку, можно вычислить скорость движения v. Эта скорость будет также зависеть от угла наблюдения .


      (1.3)


Независимо от способа измерений, мы имеем один и тот же результат. Замедление скорости имеет интересные следствия. Если v/c > 0.5, то при малых углах наблюдения  наблюдаемая скорость движения объекта будет превышать скорость света в вакууме.

Полученный результат имеет интересные следствия.


Рис. 2


Во-первых, когда источник света виден наблюдателю под углом  = 90о, мы имеем vнабл = v. Здесь наблюдаемая скорость совпадает с относительной скоростью движения инерциальных систем К' и К, которая входит в преобразование Лоренца. Скорость v, входящая в преобразование Лоренца, есть наблюдаемая скорость относительного движения инерциальных систем отсчета (явление). Она не является действительной скоростью относительного движения инерциальных систем отсчета.

Во вторых, мы будем наблюдать неравномерное движение источника световых импульсов, наблюдаемая скорость которого постоянно уменьшается. Наблюдаемое «ускорение» (замедление) равно


 


где z – координата движущейся точки. В частности, при  = 90о ускорение равно .

Существует ли «на самом деле» это ускорение или же нам это «кажется» (объективная «кажимость»)? Означает ли это, что на движущуюся частицу действуют какие-то силы? «Реальны» ли эти силы или же они тоже «кажущиеся»? Как быть с принципом причинности? Ответ очевиден. Световые лучи, передавая информацию, искажают ее. По этой причине наблюдаемая скорость не может быть действительной скоростью относительного движения.

В третьих, многие исследователи справедливо указывают на конвенциальный характер выбора угла  = 90о. Почему именно этот угол был выбран А. Эйнштейном для определения действительной скорости относительного движения инерциальных систем отсчета, ни Эйнштейн, ни его последователи не дали аргументированного ответа. Ссылка на аналогию с классическими представлениями неуместна.

В. Определение действительной скорости относительного движения инерциальных систем отсчета V. Зависимость наблюдаемой скорости движущегося объекта обусловлена искажениями светового луча. При первом способе измерений Пространственные отрезки между наблюдаемыми вспышками остаются равными, но искажается наблюдаемый интервал времени между вспышками из-за эффекта Доплера.


         (1.4)


Во втором случае наблюдаемое время DТ не претерпевает изменений, но искажается фронт волны. Вследствие этого нам будет казаться, что «длина» движущегося отрезка зависит от угла наблюдения .


          (1.5)


Интересно отметить, что при критическом угле наблюдения крит эти искажения отсутствуют, и мы будем наблюдать неискаженные интервалы времени и длины отрезков.

При


 имеем


При таком угле наблюдения ( = крит) мы сможем сравнительно просто определить действительную скорость относительного движения. Она легко выражается через наблюдаемую с помощью световых лучей (эйнштейновскую) скорость относительного движения инерциальных систем.


      (1.6)


Эта скорость не зависит от угла наблюдения , т.е. неизменна для любой точки наблюдения или угла наблюдения. Отметим, что действительная скорость относительного движения инерциальных систем отсчета может быть выше скорости света (1.6).

Таким образом, рушится один из мифов СТО. Мы в наших работах не раз говорили, что постулат о существовании предельной скорости распространения взаимодействий бессодержателен по смыслу. Взаимодействие есть процесс, а не материальный объект, и к нему неприменимы «механические» мерки.

Преобразование Лоренца, выраженное через действительную скорость относительного движения (1.4), имеет вид:



Оно сохраняет инвариантной форму уравнений Максвелла.

Это преобразование названо модифицированным преобразованием. Напомним, что никаких предположений относительно пространственно-временных отношений в инерциальных системах отсчета мы пока не делали. Что касается действительной относительной скорости движения инерциальных систем отсчета V, то она является обычной (классической) скоростью движения источника относительно наблюдателя и соответствует мгновенной передаче информации от источника к наблюдателю.


3. Эффекты, связанные с постоянством скорости света в инерциальных системах


Предварительное замечание. Световой луч всегда порождается своим источником. В системе отсчета, где этот источник покоится, отсутствуют явления аберрации света, эффект Доплера и др. Такую систему отсчета мы будем называть «базовой системой». Она всегда связана с источником светового сигнала. Если имеется среда (диэлектрик, замедляющие структуры и пр.), то для волны, отраженной, проходящей или рассеянной, такой базовой системой отсчета будет служить эта среда. Она является как бы источником «вторичного излучения». Если не будет оговорено специально, то мы величины, относящиеся к базовой системе отсчета, будем маркировать штрихами.

Математический формализм специальной теории относительности включает в себя понятие «истинный скаляр». Истинный скаляр есть величина, которая сохраняется инвариантной при применении преобразования Лоренца или модифицированного преобразования. Он имеет сущностный характер. Проекции отрезка (истинного скаляра) на оси пространственно-временных координат в любой системе отсчета относятся к разряду явлений.

Если, например, неподвижный пространственный отрезок мы будем рассматривать из движущейся системы отсчета, то его длина, определяемая квадратичной формой



будет одна и та же. Она является истинным скаляром. Однако проекции на оси координат в разных системах отсчета будут отличаться.

А. Интервалы времени и длины отрезков в разных ИСО. Рассмотрим неподвижный пространственный отрезок АВ (левый фрагмент рис. 3), ориентированный вдоль оси х’. Концы этого отрезка имеют проекции на эту ось x’1 и x’2. В момент времени t’0 мы осветим весь этот отрезок на короткое мгновение. Наблюдатель, расположенный в движущейся системе (x, ct), увидит, что в точке x1 в момент времени t1 возникнет световая точка, которая будет перемещаться к координате x2, которую она достигнет в момент времени t2 .

Рис. 3


Можно ли рассматривать пространственный интервал (х1-х2) как «длину» движущегося отрезка? Конечно нельзя! Действительная длина отрезка остается неизменной. Она не зависит от выбора наблюдателем системы отсчета. Информация, передаваемая с помощью светового луча, как мы видим, искажается. Появляется отличная от нуля проекция на ось времени (ct1, ct2 ), которая в собственной системе отсчета отрезка была равна нулю. Действительная же длина отрезка инвариантна. Она определяется, приведенной выше квадратичной формой.

Аналогичные явления имеют место, когда мы рассматриваем интервал времени. Если в неподвижной точке x’0 на короткое время t’1 – t’2 вспыхивает лампочка, интервал времени (отрезок CD на правом фрагменте рис. 3), то движущийся наблюдатель обнаружит, что светящаяся точка перемещается в пространстве от х1 к точке х2 за время ct1 – ct2. Но это время перемещения не есть действительный «интервал времени», наблюдаемый в движущейся системе. Это проекция.

Итак, мы обнаружили еще один миф о «замедлении времени» и «сжатии масштабов» в теории относительности. Никаких «сжатий» и «замедлений» в движущейся системе нет. Есть только наблюдаемые явления. Это искаженное отображение реальности, полученное с помощью световых лучей.

Б. Эффект Доплера

Как мы уже говорили, истинные скаляры («сущности») остаются инвариантными в любой инерциальной системе отсчета. Таким инвариантом является фаза волны, регистрируемая наблюдателем. Для монохроматического сигнала в системе отсчета наблюдателя, когда наблюдатель движется относительно источника в плоскости (x’; y’) мы можем записать

Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.