Министерство образования Российской Федерации
Государственное образовательное учреждение высшего профессионального образования
Сибирский Государственный Индустриальный Университет
Кафедра автоматизированного электропривода и промышленной электроники
Курсовая работа
по преобразовательной технике
Проектирование силовых блоков полупроводникового преобразователя
Выполнил: студент гр. АЭП-022
Д.С. Мысков
Проверил: преподаватель
В.Т. Хромогин
Новокузнецк 2004
Введение
Преобразовательная техника является одним из наиболее эффективных направлений электротехники. Преобразовательные устройства служат для преобразования переменного напряжения (тока) в постоянное, постоянного напряжения (тока) в переменное, переменного напряжения одной частоты в переменное напряжение другой частоты и т.д.
В преобразовательных устройствах используются средства, осуществляющие фильтрацию и стабилизацию тока и напряжения. Основными характеристиками преобразовательных устройств являются коэффициент полезного действия, коэффициент мощности и другие энергетические характеристики.
Преимущества полупроводниковых преобразователей оп сравнению с другими преобразователями неоспоримы: они обладают высокими регулировочными характеристиками и энергетическими показателями, имеют малые габариты и массу, просты и надёжны в эксплуатации. Кроме преобразования и регулирования тока и напряжения такие установки обеспечивают бесконтактную коммутацию токов в силовых цепях.
Благодаря указанным преимуществам полупроводниковые преобразовательные устройства получают широкое применение в различных отраслях народного хозяйства.
Задание
Таблица 1. Исходные данные для проектирования преобразователя
U,КВ
Uс,%
Uн,В
Iн,A
Kп
t ,c
t ,mc
q,%
Хар.нагр.
Реж. раб.
я. двиг.
выпр.,инв.
6
15
260
320
1,1
4
1,3
30
7
+
Система защиты вентилей
Способ воздушн.
qc, C°
токовая
перенапряжен.
охлаждения
вну.кз
кз=I
ком.vs,vd
ком.нгр.
естественный
1) U- напряжение питающей сети.
2) Uc- колебания напряжения питающей сети.
3) Uн - номинальное значение выпрямленного напряжения на нагрузке.
4) Iн - номинальное значение выпрямленного тока в нагрузке.
5) Kп - кратность кратковременной технологической перегрузки.
6) t - длительность кратковременной технологической перегрузки.
7) Kп - кратность длительной технологической перегрузки.
8) t - продолжительность действия длительной технологической перегрузки.
9) q - коэффициент пульсации выпрямленного напряжения на нагрузке.
10) Характер нагрузки: Я - якорь двигателя.
11) Режим работы:
В- выпрямительный , И- инверторный.
12) Способ управления преобразователем: Управляемый.
13) Система защиты:
вну. кз - внутренние короткие замыкания.
кз = I - короткие замыкания на стороне постоянного тока.
кз ~ I - короткие замыкания на стороне переменного тока.
ком.vs,vd - коммутационные перенапряжения в вентилях.
ком.нгр.- коммутационные перенапряжения со стороны нагрузки.
14) qс - температура окружающей среды.
15) h - коэффициент полезного действия установки.
16) c - коэффициент мощности установки.
1. Разработка принципиальной схемы
1.1 Выбор и обоснование схемы соединения вентилей
Разрабатываемый мной преобразователь, является преобразователем средней мощности: Pн = Iн ×Uн =83,2 кВт, следовательно целесообразно взять трёхфазную схему.
Источником питания выбираем сеть трёхфазного переменного тока.
Из трёхфазных схем выпрямления отдаю предпочтение трёхфазному мостовому выпрямителю, т.к. он обеспечивает коэффициент пульсации q=5,7% от Uн, при требуемом q=7%, т.е. отпадает необходимость применения сглаживающего фильтра. В виду расхождения напряжения питающей сети Uc=6 кВ и Uн=260В возникает необходимость включения в схему понижающего трансформатора. Обмотки трансформатора соединены звездой. При соединении вентилей в трёхфазную мостовую схему постоянные составляющие токов вторичной обмотки не создают ПВН.
Для защиты вентилей от внутренних КЗ применяются специальные быстродействующие плавкие предохранители; предохранители устанавливаются последовательно в цепи каждого тиристора; от КЗ на постоянном токе – автоматический выключатель.
Коммутационные перенапряжения в вентилях устраняются выключением R-C цепей параллельно каждому тиристору; перенапряжения в нагрузке – включением нулевого диода.
2. Расчёт параметров и выбор элементов схем
2.1 Основные соотношения, характеризующие трёхфазную мостовую схему трансформатора
Iа = 1/3 × Iн=1/3 × 320 = 106,7 А (2.1.1), [1, c.217]
U2= Uо*0,427=260*0,427=111,02В (2.1.2), [1, c.217]
I2= 0,817× Iн = 0,817 × 320 = 261,44А (2.1.3), [1, c.217]
Мощность, передаваемая в нагрузку:
Рн = Uн × Iн = 260 ×320 = 83,2 кВт (2.1.4), [1, с.217]
Типовая мощность трансформатора:
Sт = 1,05Рн = 1,05× 83200 = 87,36 кВ × А (2.1.5), [1, c.217]
Iа- средний ток протекающий через вентиль;
U2- действующее значение напряжения вторичной обмотки трансформатора;
I2 - действующее значение тока вторичной обмотки трансформатора;
2.2 Расчёт электрических параметров трансформатора
С учётом типовой мощности трансформатора и напряжения питающей сети выбираю трансформатор ТМ-100/10 [ 2, табл .29-1, c.246]
Таблица 2. Технические данные трансформатора
Параметр
Значение
Мощность
100 кВА
Напряжение силовой обмотки
6 кВ
Напряжение вторичной обмотки
230 В
Потери холостого хода
0,365 кВт
Потери короткого замыкания
2,27 кВт
Напряжение короткого замыкания
4,7 %
Ток холостого хода
2,6 %
Для отключения преобразователя от сети необходим выключатель на ток
.
C учетом возможных перегрузок в качестве QS1 из [ 5, c.589] выбираем выключатель ВНП-16 на напряжение 6 кВ и ток 30 А.
2.2.1 Расчёт сопротивлений трансформатора
X2k, R2k-приведённые к вторичной стороне реактивное и активное сопротивление одной фазы трансформатора и питающей сети переменного тока, т.е. X2k=Х2к,т + Х2к,с и R2k=R2k,т + R2k,с . Так как мощность моего преобразователя Sт = 87,36 кВт < 500 кВт , то сопротивлением питающей сети можно пренебречь : X2k=Х2к,т , R2k=Rk, 2т . [3,c.105] .
Активное сопротивление трансформатора приведённые к вторичной обмотке:
R2k,т = Ом (2.2.1.1) , [3,c.105]
Pk = 2,27 кВт - потери короткого замыкания (см . табл.2).
I2ф = 261,44 А - фазный ток вторичной обмотки трансформатора (см. 2.1.3).
Полное сопротивление трансформатора , приведённое ко вторичной обмотке:
Zk, 2т = = = 0,0248 Ом (2.2.1.2), [3,c.105]
Uk , % = 4,7 % - напряжение короткого замыкания.
U2л =230 В - фазный напряжение вторичной обмотки трансформатора.
Sн = 100 кВ×А - номинальная мощность трансформатора.
Индуктивное сопротивление трансформатора, приведённое к вторичной обмотке:
Х2к,т = = = 0,022 Ом (2.2.1.3), [3,c. 105]
Индуктивность трансформатора, приведённая ко вторичной обмотке:
L2k,т= = 0,07 мГн (2.2.1.4), [3,c.105].
2.3 Расчёт электрических параметров вентилей
2.3.1 Расчёт ударного тока и интеграла предельной нагрузки внешнего, короткого замыкания
Амплитуда базового тока короткого замыкания:
Ik, m = = =7572,35 А (2.3.1.1), [3,c.105].
U2ф = 132,8 В - фазный напряжение вторичной обмотки трансформатора .
R2k,т = 0,012 Ом - активное сопротивление трансформатора приведённые к вторичной обмотке (см. 2.2.1.1).
Х2к,т = 0,022 Ом - индуктивное сопротивление трансформатора , приведённое ко вторичной обмотке (см . 2.2.1.3).
Ударный ток предельной нагрузки внешнего, короткого замыкания:
Iуд = Ik, m × i уд =7572,35× 0,86 = 6512,2А (2.3.1.2), [3,c.105] .
i уд =0,86- ударный ток в относительных единицах, берётся с кривой [3, с.105, рис.1- 127 а], при ctg jk = = 0,545
Интеграл предельной нагрузки при глухом внешнем, коротком замыкании:
I?× t = I? k, m (I?× t) (2.3.1.3), [3,c.105],
где I?× t определяется в зависимости от ctg jk по кривой [3 , с.105, рис.1- 127 б] I?× t = 0,004
I?× t = × 0,004 = 229,4 kА?× с
I k, m - амплитуда базового тока короткого замыкания .
I?× t - интеграл предельной нагрузки в относительных единицах .
2.3.2 Расчёт ударного тока и интеграла предельной нагрузки внутреннего, короткого замыкания
Ударный ток предельной нагрузки внутреннего, короткого замыкания:
Iуд = Ik, m × i уд = 7572,35× 1,08 = 8178,12 А (2.3.2.1), [3,c.105]
i уд = 1,08 - ударный ток в относительных единицах , берётся с кривой [3, с.105, рис.1- 129 а], при ctg jk = 0,545.
Интеграл предельной нагрузки при глухом внутреннем, коротком замыкании
I?× t = I? k, m × (I?× t) = 7572,35²× 0,005 =286,7 к А?×с (2.3.2.2), [3,c.105] ,
где I?× t определяется в зависимости от ctg jk по кривой[3, с.105, рис. 1- 129 б] I?× t = 0,005 - интеграл предельной нагрузки в относительных единицах.
I k, m - амплитуда базового тока короткого замыкания.
2.3.3 Выбор вентиля
Вентиль выбирается исходя из среднего тока протекающего через него.
Iа = 106,7 А (см. 2.1.1)
Так же учту максимальный ударный тока и интеграла придельной нагрузки при коротком замыкании.
Iуд =8178,12 A (2.3.2.1)
I?× t =286,7 кА?×с (2.3.2.2)
Исходя из этого, выбираем тиристор T2-320. [4 , c.116]
Основные параметры тиристора приведены в таблице 3.
Таблица 3 .
Пороговое напряжение
1,36 В
Время обратного восстановления
8 мкс
Динамическое сопротивление в открытом состоянии
0,9 мОм
Тепловое сопротивление переход - корпус
0,05°С/Вт
Максимально допустимое постоян. обратное напряжение
( 100 - 1400 )В
Максимально допустимый средний ток в откр. cостоянии
320 А
Максимально допустимый действующий ток в откр. сост.
785 А
Ударный неповторяющийся ток в открытом состоянии
8500 А
Защитный показатель
361,25 кА?×с
Заряд обратного восстановления
300 мк Кл
2.3.4 Расчёт допустимого тока нагрузки на вентиль в установившемся режиме
[ I в] = ; (2.3.4.1),
Uo = 1,36 В - пороговое напряжение (см. таб.3).
Rд = 0,9 мОм - динамическое сопротивление в открытом состоянии (см. табл .3).
Кф = 1,77 - коэффициент формы тока.
Мощность электрических потерь:
[ D P ] = ; (2.3.4.2), [6, c.29 ].
[ qн ] = 125°С - номинальная температура кристалла.
qс = 15°С - температура окружающей среды (см. табл.1).
Тепловое сопротивление вентиль - охладитель:
R = R пк + R ос + R ко (2.3.4.3), [6, c.28]
R пк = 0,05 °С/Вт - тепловое сопротивление переход - корпус.
R ос - установившееся тепловое сопротивление охладитель - среда.
R ко - установившееся тепловое сопротивление корпус - охладитель.
Выберу охладитель ОA-034 [3 ,с.114, табл.1-26], с учётом мощности отводимого тепла Pн = 240 Вт. Где Rос = 0,3°С/Вт,
R = 0,05 + 0,3 = 0,35°С/Вт.
Тогда
[D P] = =314,29 Вт;
[ I в] = = 151,93 A;
Максимально допустимый средний ток тиристора I а = 320А (см. таблицы 3).
Следовательно, тиристор в установившемся режиме выдерживает проходящий через него ток.
2.3.5 Температурный расчёт тиристоров в различных режимах работы
а) Номинальный режим:
DPн = UO × Iа + К? ф × Rд × I?а = 1,2 × 16,5 + 1,73?× 0,008 × 16,5?= 22 Вт (2.3.5.1)
Uo = 1,36 В - пороговое напряжение (см . табл .3).
Iа = 106,7 А - средний ток протекающий через вентиль (см .2.1.1).
Кф = 1,77 - коэффициент формы [2, c.79, табл.1-20]
Rд = 0,9 мОм - динамическое сопротивление в открытом состоянии (см. табл.3).
Перегрев вентиля :
Dqн = DPн × R = 175,8×0,35 =61,53 °С (2.3.5.2).
R - тепловое сопротивление вентиль - охладитель (см.2.3.4.3).
Температура монокристаллической структуры вентиля:
qн = qс + Dqн = 15+ 61,53 =76,5 °С (2.3.5.3).
Данный перегрев не превышает допустимый, в номинальном режиме.
б) Проверка вентилей при кратковременной технологической перегрузке:
DPн max = UO × (Kп × Iа) + К? ф × Rд × (Kп × I?а) = 1,36 × (1,3× 106,7) +3×0,0009 × (1,3 × 106,7?)= 228,6 Вт (2.3.5.4).
Kп = 1,3- кратность кратковременной технологической перегрузки(см. табл.1).
Перегрев вентиля:
Dqн max = Dqн +(DPн max - DPн ) × Rtкп = 61,53 +(228,6-175,8) × 0,0125=62,19°С (2.3.5.4)
Dqн - перегрев вентиля при номинальном режиме.
DPн - мощность электрических потерь при номинальных перегрузках.
Rtкп = 0,0125 °С/Вт , при t =30 мс , по графику. [3 , c.120]
qн max = qс + Dqн max = 15 + 62,19 = 77,19 °С (2.3.5.5).
qс = 15 °С - температура окружающей среды (см . табл.1).
Данный перегрев не превышает допустимый , в данном режиме.
в) Проверка вентилей при длительной технологической перегрузке:
DPн max = UO × (Kп × Iа) + К? ф × Rд × (Kп × I?а) = 1,36 × (1,1× 106,7) +3 ×0,0009 × (1,1 × 106,7?)= 193,4 Вт .
Kп = 1,1- кратность длительной технологической перегрузки (см. табл.1).
Dqн max = Dqн +(DPн max - DPн ) × Rtкп = 61,53 + (193,4 –175,8 ) × 0,04 = 62,23°С
Dqн - перегрев вентиля при номинальной перегрузке.
DPн - мощность электрических потерь при длительной перегрузке.
Rtкп = 0,04 °С/Вт , при t = 4 с , по графику. [3, c. 120]
qн max = qс + Dqн max = 15 + 62,23 = 77,23 °С.
qс = 15 °С - температура окружающей среды (см. табл.1).
Данный перегрев не превышает допустимый, в данном режиме.
2.3.6 Проверка вентилей по обратному напряжению
Выбор допустимого обратного напряжения выполняется ориентировочно так:
Uобр. max = Uн ×1,05 = 260 × 1,05 = 273 В . [1, c. 217]
Уточнённое значение:
Uобр. max = Кхх × U2m (2.3.6.1) , [1, c. 12].
U2m = Ö 2 × U2 = Ö 2 × 230 = 325,3 В - амплитуда напряжения вторичной обмотки трансформатора .
= 2,44 (2.3.6.2) , [1, c. 13].
А = 0,5 – коэффициент, характеризующий кратность падения напряжения на стороне выпрямленного тока по отношению к Uk , % . [3, c.76].
Uk , % = 4,7 % - напряжение короткого замыкания (см .табл.2).
- падение напряжения на вентиле.
В (2.3.6.3) .
[ I а] = 106,7А - допустимый ток нагрузки на вентиль (2.3.4.1).
Uo = 1,36 В - пороговое напряжение (см. табл.3).
b = 1- коэффициент зависящий от схемы соединения вентилей [3 , табл.3]
Uн =260 В - номинальное значение выпрямленного напряжения на нагрузке (см. табл.1).
å UК=1 В - суммарное падение напряжения во всех элементах выпрямителя.
DUС % = 15 % - колебание напряжения питающей сети (см .табл.1).
Страницы: 1, 2