Зима на побережье продолжается в среднем 166 дней. Из 134 мм зимних осадков около 80% выпадает до января. Высота снежного покрова на прибрежных равнинах 39-72 см, в среднем около 54 см. В горно-лесном поясе снега выпадает от 62 до 103 см, в субальпийском поясе – от 121 до 189 см, в альпийском – от 158 до 246 см /4/.
Среднесуточные температуры января -22,7°, февраля -22,8°. Продолжительность лета на побережье 79 дней. Безморозный период длится 67 дней. Последние заморозки случаются в июне, первые – в августе. Среднесуточная температура июня 11,8°, августа 12,6". Среднегодовое количество осадков на побережье составляет 407,6 мм. Летом выпадает около 153 мм дождей, большая их часть обычно приходится на вторую половину июля и август.
По наблюдениям М.А.Федоровой, с 1955 г. произошло заметное потепление климата. Зима стала короче и мягче. Количество зимних осадков уменьшилось, а летних – увеличилось. Лето стало длиннее примерно на 25 дней. Среднегодовая температура повысилась на 1 градус, но вместе с тем чаще стали наблюдаться поздне-весенние и летние заморозки. Правда, при выведении средних многолетних показателей за весь период наблюдений эти перемены несколько сглаживаются и выступают не столь рельефно, но тенденция от этого не меняется.
Основными проблемами, оказывающими негативное влияние на экологическую обстановку являются: повсеместная порой несанкционированная вырубка леса, размещение лесопилок в водоохранных зонах рек и водосбора озера Байкал, огромное воздействие на экологию района оказывают неорганизованный туризм и браконьерство.
8.3 Экологическая характеристика пансионата «Колос» Максимиха Баргузинского района
Объектом моего проектирования является туристическая база пансионат «Колос», село Максимиха Баргузинского района, и следовательно находится непосредственно в зоне водосбора озера Байкал. База занимается приемом и размещением туристов, организацией их досуга и отдыха, что оказывает прямое влияние на экологическую обстановку побережья оз. Байкал, так как пансионат находится в 150 метрах от берега озера.
Среднесуточный расход воды в пансионате в летний период колеблется 3000 – 4500 литров в сутки. На территории имеется водозаборная скважина глубиной около 11 метров, оснащенная глубинным насосом, для центрального водоснабжения применяется водонапорная башня с высотой опоры 15 метров и объемом бака 10000 литров. Все объекты водоснабжения, согласно нормам СНиП, имеют зоны санитарной охраны для предотвращения недопустимого ухудшения качества воды по средствам загрязнения и сброса сточных вод.
Канализационные стоки и нечистоты перед сбросом очищаются в специальном накопителе сточных вод.
Горячее водоснабжение осуществляется за счет электрокатлов и водонагревателей марки РУСНИТ 230, теплоснабжение – по средствам автономной котельной, что оказывают воздействие на экологическое равновесие дополнительным нагревом и выделением вредных веществ при сгорании топлива.
Электроснабжение пансионата – центральное, рядом с территорией находится трансформатор мощностью 65 кВ*А, который создает дополнительный шумовой фон, магнитное поле вокруг и вероятность утечки трансформаторного масла при замене и в процессе эксплуатации, что загрязняет почву, а следовательно и воды Байкала.
Не малый вред экологической частоте Байкала наносят и безответственные нерадивые туристы, которые систематически загрязняют побережье пластиковым и другим видом мусора, из-за своего бескультурья вырывают, вытаптывают, вырубают редкие виды растений и деревьев, нанося тем самым непоправимый вред флоре и фауне Байкальского региона. На очистку местности ежегодно БГСХА направляет несколько групп студентов, которые очищают побережье и территорию пансионата, как весной, так и в процессе летнего функционирования турбазы.
8.4 Экологическое обоснование проекта
В ходе разработки дипломного проекта на тему «Автономное энергоснабжение гостевого дома, пансионата «Колос»», мною рассчитаны и предложены к внедрению следующие элементы системы автономного энергоснабжения:
Гибридная фото-ветро установка, для автономного электроснабжения Гостевого дома пансионата «Колос», основным источником энергии, которой является ветер – экологически чистый и неисчерпаемый источник энергии.
Выработка электроэнергии с помощью ветра имеет ряд преимуществ:
· Экологически чистое производство без вредных отходов;
· Экономия дефицитного дорогостоящего топлива;
· Доступность;
· Возобновляемость.
Использование данной установки идеально подходит для туристических баз отдыха находящихся в санитарных и природоохранных зонах, так как такая установка исключает шумовое и электромагнитное воздействие на окружающую природу, решает проблему утилизации отработанного трансформаторного масла.
Пассивная солнечная система и система солнечных коллекторов, для автономного теплоснабжения гостевого дома.
Система преобразует экологически чистую солнечную энергию в необходимую – тепловую, и является альтернативой котельным, электрокотлам и прочим водонагревательным установкам.
Внедрение такой системы позволит значительно снизить выброс в окружающую среду углекислого газа СО2 , выделяемого при сгорании органического топлива, сократить потребление природных ресурсов в частности леса на отопительные нужды, решить вопрос доставки и хранения топлива, значительно уменьшить тепловое воздействие котлоагрегатов на природу побережья.
8.5 Предложения по внедрению перспективных природоохранных мероприятий
Разработка дипломного проекта на тему: «Автономное энергоснабжение гостевого дома, пансионата «Колос»», выполнена с учетом экологических требований.
Ряд предложений по внедрению перспективных природоохранных мероприятий в пансионате «Колос»:
1. Переход от центрального электроснабжения к внедрению экологически чистой фото – ветро установки, что исключает шумовое и электромагнитное воздействие на окружающую природу и вероятность загрязнение почвы трансформаторным маслом.
2. Осуществлять горячее водоснабжение за счет внедрения солнечных коллекторов с теплоносителем – вода, что по экологической безопасности не входит ни в какое сравнение с водонагревателями и электрокотлами.
3. Теплоснабжение помещений осуществлять по средствам пассивной солнечной системы с теплоносителем воздух, которая по сравнению с автономной котельной полностью исключает выброс в атмосферу вредных веществ, выделяемых при сгорании органического топлива.
4. Предлагаю внедрить установку для очистки «серых» стоков «СТОК-2», установка рассчитана на переработку стоков из умывальника, ванны, душа. Очищенные стоки пригодны для повторного использования как техническая вода и вода для полива.
5. Установить на побережье мусоросборники, с последующей регулярной их очисткой и утилизацией.
6. На территории пансионата установить щиты с наглядной агитацией, по сохранению чистоты на побережье, информацией об ответственности за экологическое состояние Байкальского региона.
7. Организовать в летний период студенческие бригады по очистке побережья и прибрежной зоны.
8. В график туристической базы включить день охраны окружающей среды, с привлечением отдыхающих к очистке прибрежной зоны и поощрении наиболее отличившихся.
9. Вовлечь в природоохранную работу местных школьников, организовав из их рядов Зеленый патруль, занимающийся сбором мусора и предотвращением загрязнения.
10. Руководству пансионата уделять внимание не только экономической выгоде, но и экологической обстановкой побережья после отдыха посетителей турбазы.
На основании вышеприведенного анализа экологической ситуации на побережье оз. Байкал в районе Максимихи можно сделать вывод, что наряду с безответственным поведением отдыхающих немаловажный вред окружающей среде наносят трансформаторные подстанции и автономные котельные, обеспечивающие энергоснабжение туристических баз отдыха расположенных непосредственно в зоне водосбора озера Байкал.
В дипломном проекте мною предложено внедрить экологически чистые гибридную фото-ветро установку, пассивную солнечную систему и систему солнечных коллекторов для автономного энергоснабжения гостевого дома пансионата «Колос», что значительно улучшит экологическую обстановку в масштабах побережья и прибрежной зоны.
9. Экономический раздел
9.1 Экономический анализ деятельности пансионата «Колос»
Пансионат «Колос» является базой туристического отдыха БГСХА, пансионат находится в поселке Максимиха Баргузинского района, в 30 км. от Усть-Баргузина. Его основной вид деятельности - обеспечение отдыха, оздоровления, психологической разгрузки и восстановление сил отдыхающих.
Анализ использования основных средств пансионата «Колос» приведен в табл. 9.1.
Таблица 9.1 Анализ использования основных средств пансионата «Колос».
Показатели
2004 г
2005 г
2006 г
2006 г в % к 2004 г
1
2
3
4
5
Среднегодовое количество работников, чел.
10
12
120
Стоимость валовой продукции в текущих ценах, всего, тыс. руб.
3150
3420
3650
116
Площадь территории пансионата, га
2,73
100
Основные производственные фонды, тыс.руб.
7660
7780
8245
107
Фондоотдача (приходится валовой продукции на 1 руб. стоимости основных фондов), руб
0,41
0,43
0,44
108
Фондоемкость (приходится основных фондов на 1 руб. валовой продукции), руб.
2,43
2,27
2,25
93
Фондообеспеченность (приходится основных фондов на 1 га территории), тыс.руб.
2805,9
2850
3020
107,6
Фондовооруженность (приходится основных фондов на одного среднегодового работника), тыс.руб.
766,0
648,3
687,1
89,6
Из табл.9.1. видно, что стоимость валовой продукции в 2006 году по отношению к 2004 выросло на 13,6 % в связи с увеличением среднемесячного числа отдыхающих, основные производственные фонды выросли на 7 % за счет строительства новых корпусов, соответственно увеличилась фондоотдача и фондообеспеченность.
9.2 Экономическое обоснование проекта
В виду объявления байкальского региона особой рекреационной зоной, туристический бизнес в республики переходит на новый более высокий уровень. В настоящее время в большинстве туристических баз на побережье Байкала техническое состояние гостевых номеров и различного рода оборудования не соответствует современным нормам.
Необходимые средства на обеспечение турбаз новыми гостевыми номерами и оборудованием, будут выделяться с учетом внедрения экологически чистых энергоэффективных источников энергии.
Предложенные к внедрению установки, рассчитанные в данном дипломном проекте обеспечат получение относительно дешевой и экологически чистой тепловой и электрической энергии, что приведет к сокращению текущих годовых затрат пансионата и повышение экономической эффективности производства. Расчет экономической эффективности и срока окупаемости установок приведен ниже.
9.3 Расчет экономической эффективности использования ФВУ
9.3.1 Расчет капитальных затрат
Капитальные затраты на ФВУ для электроснабжения гостевого дома
К3 = СВ + СФ + СА + СОБ + СМ (9.1.)
где СВ , СФ, СА – стоимость соответственно ветроустановки, фотоэлектрической установки и аккумуляторных батарей, руб.
СОБ – стоимость электрооборудования, руб.
СМ – стоимость монтажа, руб.
КЗ = 75000+40800+14175+15300+9000 = 154275 руб.
9.3.2 Расчет текущих затрат
Текущие затраты на проектируемую установку находим по формуле:
ТЗ(ПР) = А+Р+ТО+ТР+ЗП; (9.2)
где: А – амортизационные отчисления, руб.
А=0,12*КЗ = 18513 руб.,
Р – релаксация, руб.
Р=0,05*КЗ = 7714 руб.,
ТО,ТР – затраты на техническое обслуживание и ремонт,
ТО + ТР = 0,08*КЗ = 12342 руб.
ЗП – заработная плата, руб.
ТЗ(ПР) = 18513+7714+12342+9600 = 48169 руб.
Текущие затраты на традиционное электроснабжение:
ТЗ(ТР) = ТО+ТР+Э (9.3)
где Э – затраты на электроэнергию, руб.
Э = W*ЦЭ (9.4.)
где W – годовое потребление электроэнергии, кВт* ч,
ЦЭ – цена 1 кВт*ч, руб.
Э = 32150*2,69 = 86483,5 руб.
ТО = ЦТ,О.* NТ.О. (9.5.)
где ЦТ,О, - цена одного условного текущего осмотра,
NТ.О. – количество текущих осмотров за год.
ТО = 68*12 = 816 руб.
ТР = ЦТ.Р. * NТ.Р. = 1830*0,5 = 915 руб.
ТЗ(ТР) = 86483,5 +816+915 = 88215 руб.
9.3.3 Годовая экономия
СЭК = ТЗ(ТР) - ТЗ(ПР) , руб. (9.6.)
СЭК = 88215 – 48169 = 40045 руб.
9.3.4 Себестоимость 1 кВт*ч
Себестоимость 1 кВт*ч, вырабатываемого ФВУ:
С = ТЗ(ПР) /Q (9.7.)
где Q – годовой отпуск электроэнергии, кВт*ч.
С = 48169/32150 = 1,5 руб.
9.3.5 Рентабельность
R = (CЭК/ ТЗ(ПР) )*100 % = (40045/48169)*100 = 83 %. (9.8.)
9.3.6 Срок окупаемости установки
= КЗ / СЭК ; год. (9.9.)
= 154275/40045 = 3,8 года.
9.4 Расчет экономической эффективности использования гелиоустановки
9.4.1 Расчет капитальных затрат
Капитальные затраты на гелиоустановку для горячего водоснабжения гостевого дома:
К3 = СКОЛ + СБАК + СМОН + СОБ +СА, руб. (9.10.)
где СКОЛ – стоимость солнечных коллекторов, руб.
СБАК – стоимость бака аккумулятора, руб.
СОБ – стоимость дополнительного оборудования, руб.
СМОН – стоимость монтажа, руб.
СА – стоимость антифриза, руб.
КЗ = 40000+10000+18000+15000+11400 = 94400 руб.
9.4.2 Расчет текущих затрат
ТЗ(ПР) = А+Р+ТО+ТР+Э+ЗП; (9.11.)
А=0,12*КЗ = 11328 руб.,
Р=0,05*КЗ = 4720 руб.,
ТО + ТР = 0,08*КЗ = 7552 руб.
Э – затраты на электроэнергию, руб.
Э = W*ЦЭ = 1674*2,69 = 4503 руб.
ТЗ(ПР) = 11328+4720+7552+4503+2400 =30403 руб.
Текущие затраты на традиционное горячее водоснабжение:
ТЗ(ТР) = СГВС +ТО+ТР+ЗП (9.12.)
где: СГВС – затраты на горячее водоснабжение, руб.
СГВС = WГВ*Ц, (9.13.)
где: WГВ – нагрузка горячего водоснабжения, 19,8 Гкал.
Ц – цена 1 Гкал, для электрокотла 1,6 т.руб./Гкал.
СГВС = 19,8 * 1600 = 31680 руб.
ЗП – заработная плата оператора котельной.
ТЗ(ТР) = 31680+4200+24000 = 59880 руб.
9.4.3 Годовая экономия
СЭК = ТЗ(ТР) - ТЗ(ПР) = 59880 – 30403 = 29477 руб.
9.4.4 Себестоимость 1 Гкал
Себестоимость 1Гкал, вырабатываемой гелиосистемой:
С = ТЗ(ПР) /Q, руб. (9.14.)
где Q – годовой отпуск тепловой энергии, Гкал
С = 30403/19,8=1500 руб.
9.4.5 Рентабельность
R = (CЭК/ ТЗ(ПР) )*100 % = (29477/30403)*100 = 96 %
9.4.6 Срок окупаемости установки
= КЗ / СЭК = 94400 / 30403 = 3,1 год.
9.5 Расчет экономической эффективности использования пассивной солнечной системы
9.5.1 Расчет капитальных затрат
Капитальные затраты на ПСС для отопления гостевого дома:
К3 = СПСС + СОБ + СМ , руб. (9.15..)
где СПСС – стоимость пассивной солнечной системы, руб.
КЗ = 98200 + 15000 + 16000 = 129200руб.
9.5.2 Расчет текущих затрат
ТЗ(ПР) = А+Р+ТО+ТР+Э; (9.16.)
А=0,12*КЗ = 15504 руб.,
Р=0,05*КЗ = 6460 руб.,
ТО + ТР = 0,08*КЗ = 10336 руб.
Э = W*ЦЭ = 216*2,69 = 581 руб.
ТЗ(ПР) = 15504 + 6460 + 10336 + 581 = 32868 руб.
Текущие затраты на традиционное отопление:
ТЗ(ТР) = СОТ +ТО+ТР (9.17.)
где: СОТ – затраты на отопление, руб.
СОТ = WОТ*Ц, (9.18.)
где: WГВ – нагрузка теплоснабжения, 79,9 Гкал.
Ц – цена 1 Гкал, для теплоснабжения 914,58 руб./Гкал.
СГВС = 79,9 * 914,58 = 73075 руб.
ТЗ(ТР) = 73075 + 8200 = 81 275 руб.
9.5.3 Годовая экономия
СЭК = ТЗ(ТР) - ТЗ(ПР) = 81275 – 32868 = 48407 руб.
9.5.4 Себестоимость 1 Гкал
Себестоимость 1Гкал, вырабатываемой пассивной солнечной системой:
С = ТЗ(ПР) /Q, руб. (9.19.)
С = 32868/79,9 = 411 руб.
9.5.4 Рентабельность
R = (CЭК/ ТЗ(ПР) )*100% = (48407/32868)*100 = 147 %
9.5.5 Срок окупаемости установки
= КЗ / СЭК = 129200/ 48407 = 2,7 года.
Заключение
Дальнейшее развитие традиционной энергетики столкнулось с рядом проблем, основными из которых являются:
- экологическая угроза человечеству;
- быстрое истощение запасов ископаемого топлива;
- значительный рост цен на электроэнергию (для России).
В этой связи, перспективным направлением в электроэнергетике может быть применение возобновляемых источников энергии , что подтверждается мировой практикой.
В настоящей работе предложено техническое решение использования ВИЭ для энергоснабжения гостевого дома пансионата «Колос» Максимиха Баргузинского района. В процессе разработки получены следующие научно-практические результаты:
- рассчитана гибридная фото-ветро установка для электроснабжения гостевого дома.
- определены помесячные нагрузки отопления и горячего водоснабжения.
- рассчитаны пассивная солнечная система и гелиоустановка для теплоснабжения дома, определено количество полезного тепла полученного от установок и коэффициент замещения традиционной системы теплоснабжения.
- решены некоторые экономические, экологические задачи и задачи безопасности жизнедеятельности.
По результатам работы можно сделать следующие выводы.
1. В Республике Бурятия наиболее перспективны из известных ВИЭ ветер и солнце.
2.Для надежного автономного электроснабжения гостевого дома с расчетной нагрузкой P=18,5 кВт наиболее целесообразно с экономической точки зрения комплексное использование ветроустановки, солнечной установки и аккумуляторного резерва в сочетании 1,5кВт, 0,36кВт и 1340 А×часов соответственно.
3. Для обеспечения горячего водоснабжения для 11 посетителей гостевого дома достаточно гелиоустановки площадью S=10м2, расположенной под углом 50 градусов и ориентацией на юг.
4. Подтверждена эффективность и экономичность использования ПСС отопления.
5. При внедрении экологически чистых ВИЭ на побережье оз. Байкал экологическая ситуация в Байкальском регионе значительно улучшится.
6. Установки на основе ВИЭ для энергоснабжения жилого дома достаточно экономичны и имеют низкий срок окупаемости.
Литература
1. А.А. Пястолов, Г.П. Ерошенко «Эксплуатация электрооборудования». – М.,Агропромиздат, 1990. – 286 с.
2. «Аккумуляторные батареи. Эксплуатация, техническое обслуживание и ремонт». / НИИАТ, - М., Транспорт, 1970.
3. Андрианов В. Н. «Электрические машины и аппараты». - М., Колос, 1971.
4. «Атлас Забайкалья». /РГУ, Гл. упр. геодезии и картографии. - М.,1973.
5. Безопасность жизнедеятельности в сельскохозяйственном производстве, Шкрабак В.С., Луковников А.В., и др. – М., Колос, 2002. – 512 с.
6. Б.М. Полуй «Архитектура и градостроительство в суровом климате». – Л., Стройиздат, 1989. – 300 с.
7. В.И. Баев «Практикум по электрическому освещению и облучению». – М., Агропромиздат, 1991. – 175 с.
8. В.Т. Тайсаева, Л.Р. Мазаев «Нетрадиционные возобновляемые источники энергии. Расчет энергетических показателей». – Улан-Удэ, БГСХА, 2002. – 107 с.
9. В.Т. Тайсаева «Солнечное теплоснабжение в условиях Сибири». – Улан-Удэ, БГСХА, 2003. – 200 с.
10. Г.В. Савицкая «Анализ хозяйственной деятельности предприятия». – Минск, 2002. – 704 с.
11. Г.И. Николадзе «Водоснабжение». М., Стройиздат, 1972.- 248 с.
12. ГОСТ 12.1.013 - 78. ССБТ. Строительство. Электробезопасность. Общие требования.
13. ГОСТ 12.1.019 - 79. ССБТ Электробезопасность. Общие требования.
14. ГОСТ 12.1.010 - 76. ССБТ Взрывобезопасность. Общие требования. (СТ СЭВ 3617 - 81)
15. ГОСТ 12.1.030 - 81. ССБТ Электрообезопасность. Защитное заземление, зануление.
16. Дж. Твайделл, А. Уэйр. «Возобновляемые источники энергии» (Пер. с англ.). - М., Энергоатомиздат, 1990.
17. И.Ф. Бородин, Н.И. Кирилин «Основы автоматики и автоматизации производственных процессов». – М., Колос, 1977. – 328 с.
18. Использование солнечной энергии для теплоснабжения зданий. / Э. В. Сарнацкий и др. - Киев, Будевильник, 1985.
19. Пилюгина В.В., Гурьянов В.А. «Применение солнечной и ветровой энергии в сельском хозяйстве». Обзорная инф.-М.: ВАСХНИЛ, 1981.
20. Каганов И. Л. Курсовое и дипломное проектирование. - М., Колос, 1980.
21. Кажинский Б., Перли С. «Ветроэлектростанции». - М., ДОСААФ, 1966.
22. Кораблев А. Д. «Экономия энергоресурсов в сельском хозяйстве». - М., Агропромиздат, 1988.
23. Козюменко В. Ф., Дорощук О. Н. «Методические указания по экономическому обоснованию спец. конструкций, разрабатываемых в дипломных проектах, выполняемых на факультете электрификации». - Зерноград, АЧИМСХ, 1993.
24. «Механизация и электрификация сельскохозяйственного производства»./ А.П. Тарасенко, В.Н. Солнцев и др. – М., Колос, 2004. – 552 с.
25. Низковольтные электрические аппараты. Справочник. Ч.1. Пускатели, контакторы. - М., ВНИИстандартэлектро, 1991.
26. «Правила устройства электроустановок (ПУЭ )»./ Минэнерго СССР. - М., Энергоатомиздат, 1985.
27. «Правила технической эксплуатации электроустановок потребителей и Правила техники безопасности при эксплуатации электроустановок потребителей (ПТЭ и ПТБ )». - М., Энергоатомиздат, 1986.
28. «Руководящие материалы по проектированию электроснабжения сельского хозяйства». - М., Сельэнергопроект, 1981.
29. «Рабочий проект гостевого дома пансионата «Колос», БурятскаяГСХА им. В.Р.Филиппова». – Улан-Удэ, Бурятгражданпроект, 2006.
30. СНиП II-31-74 «Водоснабжение. Наружные сети и сооружения». М., Стройиздат, 1975.
31. «Фотоэлектрическая энергетика сельского хозяйства». Стребков Д.С. и др Техника в с. х., N1, 1988.
32. «Электроснабжение сельского хозяйства»./ Будзко И.А., Лещинская Т.Б. и др. – М., Колос, 2000. – 536 с.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8