Рефераты. Расчет разветвленной электрической цепи постоянного тока






выход из строя одной лампы размыкает всю цепь.

Рассмотрим случай последовательного соединения трех про­водников сопротивлениями J^, Д^, Ну подключенных к источни­ку постоянного тока. Схема такой электрической цепи представ­лена на рисунке.

     Рис.
4


Амперметром А измеряют общую силу тока JT в цепи. Вольт­метрами V1, V2, V3 измеряют напряжение на каждом проводнике, а вольтметром V — напряжение на всем участке цепи.

Расчет токов, напряжений и сопротивлений на участке цепи при таком соединении делают с помощью четырех правил.

а) Сила тока одинакова во всех участках цепи:

I1=I2=I3=I=const.

так как в случае постоянного тока через любое сечение провод­ника за определенный интервал времени проходит один и тот же заряд.

б) Падение напряжения в цепи равно сумме падений напряжений на отдельных участках:

U1+U2+U3=U

Это можно установить из опытов по показаниям вольтметров.

в) Падение напряжения на проводниках прямо пропорционально их сопротивлениям:

U1/U2=R1/R2

Согласно закону Ома для участка цепи  и правилу (а):

I=U1/R1;

I2=U2/R2=>U1/R1=U1/R2, откуда

U1/U2=R1/R2

г) Общее сопротивление цепи равно сумме сопротивлений отдель­ных участков:

R=R1+R2+R3

Воспользуемся законом Ома для участка цепи и правилами (а) и (б):

I=U/R=>U=I*R

Аналогично:

U1=I*R1, U2=I*R2, U3=I*R3

U=U1+U2+U3=I*R1+I*R2+I*R3=I*(R1+R2+R3)=I*R

 Откуда получим формулу для общего сопротивления цепи:

R=R1+R2+R3

Параллельное соединение

Например, соединение приборов в наших квартирах, когда выход из строя какого-то прибора не отражается на работе ос­тальных.

При параллельном соединении трех проводников сопротивле­ниями R1, R2 и R3 их начала, и концы имеют общие точки подклю­чения к источнику тока. Все вместе параллельно соединенные проводники составляют разветвление, а каждый из них называ­ется ветвью. Схема соединения изображена на рисунке.


     Рис.5


Силу тока в каждой ветви измеряют амперметрами A1, A2 и A3. Для расчета токов, напряжений и сопротивлений также пользу­ются четырьмя правилами:


а) Падение напряжения в параллельно соединенных участках цепи одинаково:

U1=U2=U3=U=const.

так как во всех случаях падение напряжения измеряют между

одними и теми же точками.

б) Сила тока в неразветвленной части цепи равна сумме сил токов, текущих в разветвленных участках цепи:

I1=I2=I3=I

в) Сила тока в разветвленных участках цепи обратно пропорцио­нальна их сопротивлениям:

I1:I2:I3=1/R1:1/R2:1/R3

Воспользуемся законом Ома для участка цепи:

I1=U1/R1=>U1=I1*R1

Аналогично:

U2=I2*R2

U3=I3*R3

 Согласно правилу (а):

 U1=U2=U3=>I1*R1=I2*R2=I3*R3, откуда

I1:I2:I3=1/R1:1/R2:1/R3

г) Общее сопротивление цепи:

1/R=1/R1+1/R2+1/R3

Согласно закону Ома для участка цепи:

I=U/R

и для каждой ветви:

I1=U1/R1; I2=U2/R2; I3=U3/R3

Используя правила (а) и (б), получим:

I=I1+I2+I3=U/R1+U/R2+U/R3=U*(1/R1+1/R2+1/R3) =U/R,

откуда

1/R=1/R1+1/R2+1/R3


     1.6. Закон Ома для полной цепи.

     Рис.
6


Закон Ома для полной (замкнутой) цепи выражает связь между силой тока в цепи, ЭДС и полным сопротивлением.

Рассмотрим полную электрическую                    Т  цепь, состоящую из источника тока с ЭДС е и внутренним сопротив­лением r и внешнего сопротивления R. Внутреннее сопротивление — сопро­тивление источника тока, внешнее со­противление — сопротивление потре­бителя электрического тока, например резистора.                                   

Электрический ток совершает работу не только на внешнем, но и на внутреннем участке цепи: нагревается не только резистор, но и сам источник тока.

По закону сохранения энергии работа электрического тока в замкнутой цепи, равная работе сторонних сил источника тока, равна количеству теплоты, выделившейся на внутреннем и внеш­нем участках цепи:

A=Aст=Q

Поскольку за время Dt через поперечное сечение проводников пройдет заряд. Dq, то работа сторонних сил по перемещению заря­да равна:

Aст=e*Dq=eI*Dt

где I=Dq/Dt - сила тока в проводнике. При этом выделившееся

количество теплоты согласно закону Джоуля-Ленца  равно:

Q=I2R*Dt+I2r*Dt

Тогда

Aст=eI*Dt=I2R*Dt+I2r*Dt, или

E=I*R+I*r

Здесь произведение IR называется падением напряжения на внешнем участке цепи, Ir — падением напряжения на внутрен­нем участке цепи.

Таким образом, ЭДС равна сумме падений напряжений на внешнем и внутреннем участках полной (замкнутой) цепи.

Напряжение U (падение напряжений) на внешней цепи:

U=e-Ir


Сумма внешнего и внутреннего сопротивлений есть полное сопротивление цепи: R + r. Закон Ома для полной цепи:

I=e/R+r

Сила тока в полной электрической цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Следствия из закона Ома для полной цепи

1. Если внутреннее сопротивление источника тока r мало по срав­нению с внешним сопротивлением R, то оно не оказывает замет­ного влияния на силу тока в цепи. При этом напряжение на зажимах источника приблизительно равно ЭДС:

U=IR=е

2. Когда внешнее сопротивление цепи стремится к нулю (R -> 0) — при коротком замыкании, сила тока в цепи определяется внут­ренним сопротивлением источника и принимает максималь­ное значение:

Imax=e/r

3. При разомкнутой цепи, когда R-> оо (сопротивление внешнего участка цепи бесконечно велико) I = 0, напряжение источни­ка тока равно его ЭДС. или ЭДС источника измеряется разнос­тью потенциалов на его клеммах:

e=U=ф2-ф1

Знак ЭДС и напряжение на участке цепи могут быть положи­тельными и отрицательными. Значение ЭДС считается положи­тельным, если она повышает потенциал в направлении тока — ток внутри источника идет от отрицательного полюса к положитель­ному полюсу источника. Напряжение принимается положитель­ным, если ток внутри источника идет в направлении понижения потенциала (от положительного полюса источника к отрицатель­ному полюсу).

     1.7. Источники тока, их соединения.


На практике несколько источников электрической энергии соединяются в группу — батарею источников электрической энергии. Соединение в батарею может быть последовательное, параллельное и смешанное.



     При последовательном соедине­нии положительный полюс предыду­щего источника соединяется с отрица­тельным полюсом последующего.

Полная ЭДС цепи равна алгебраи­ческой сумме ЭДС отдельных элемен­тов, а внутреннее сопротивление бата­реи равно сумме сопротивлений источников:

     Рис.7


e=Si=1ei,

r=Si=1ri,


     Объяснить это можно тем, что при последовательном соедине­нии электрический заряд поочередно проходит через источник электрической энергии и в каждом из них приобретает энергию. Внутреннее сопротивление батареи также увеличивается.

При последовательном соединении одинаковых источников с ЭДС е и внутренним сопротивлением г ЭДС батареи  и ее внут­реннее сопротивление равны.

eб=e*n,

Rб=R*n

где п — число источников.

Закон Ома для полной цепи при последовательном соедине­нии одинаковых источников тока записывается в виде;

I=(e*n)/(R+r*n)

где e и r — ЭДС и внутреннее сопротивление одного источника, R — сопротивление внешнего участка цепи, I — сила тока в цепи.


     Рис.8


     Например, полная цепь со­держит несколько источников тока, ЭДС которых равны E1,E2,E3 а внутренние сопротивле­ния—r1,r2,r3, соответственно. ЭДС, действующая в цепи, равна:

eб=e1 -e2+e3-e4

Сопротивление батареи равно:

r,, = r, + r, + r, + г.


     При этом учитываем, что положительными являются те ЭДС, которые повышают потенциал в направлении обхода цепи, т.е. направление обхода цепи совпадает с переходом внутри источни­ка от отрицательного полюса источника к положительному.

    Последовательное соединение источников тока применяется в тех случаях, когда нужно повысить напряжение на внешней цепи, причем сопротивление внешней цепи велико по сравнению с внутренним сопротивлением одного источника.


     Рис.
9


При параллельном соединении источников все их положительные

полюсы присоединены к одному проводнику, а отрицательные—к другому.                

Полная ЭДС цепи (всей батареи равна ЭДС одного источника: eб= e,а           внутреннее сопротивление батареи равно:

Rб=r/n


где п — число параллельно соединенных источников.

     При параллельном соединении ток одного источника элект­рической энергии уже не проходит через другие, и поэтому каж­дый заряд получает энергию только в одном источнике. Сопротив­ление батареи меньше сопротивления одного источника, так как через каждый источник электрической энергии проходит только часть зарядов, перемещающихся во внешней цепи.

Закон Ома для полной цепи при параллельном соединении одинаковых источников тока записывается в виде:

I=e/(R+r/n)

     Если заменить один источник тока батареей параллельно со­единенных источников, то ток в цепи возрастает.

Параллельное соединение источников тока применяется в тех случаях, когда нужно усилить ток во внешней цепи, не изменяя напряжения, причем сопротивление внешней цепи мало по срав­нению с сопротивлением одного источника.

Если ЭДС источников различны, то для источников тока на­пряжений и ЭДС в различных участках цепи удобно пользоваться правилами Кирхгофа, сформулированными в 1847 г. немецким Физиком Густавом Робертом Кирхгофом (1824-1887).

1. Первое правило (правило узлов).

Алгебраическая сумма сил токов, сходящихся в любом узле, равна нулю:

SIi=0

i= 1

где п — число проводников, сходя­щихся в узле. Узлом в разветвлен­ной цепи называется точка, в кото­рой сходится не менее трех проводников. Токи, теку­щие к узлу, считаются положи­тельными, а токи, текущие от узла, отрицательными.

     Рис.
10

 

Узел токов. I1+I2+I4=I3+I5 или I1+I2-I3+I4-I5=0.


2 Второе правило (правило контуров).

В любом замкнутом контуре, выделенном в разветвленной электрической цепи, алгебраическая сумма произведений сил токов /; на соответствующее сопротивление ri равна алгебраической сумме всех электродвижущих сил, в этом контуре:

Si=1IiRi=Sk=1ek

Токи считаются положительными, если они совпадают с ус­ловно выбранным направлением обхода контура. ЭДС считается

     Рис.
11

положительной, если она повышает потенциал в направлении


 Контур, выделенный из разветвленной цепи.


обхода контура (т.е. направление обхода совпадает с переходом от отрицательного полюса к положительному). Направление обхода контура выбирается по часовой стрелке или против часовой стрел­ки рис .

I1R1+I2R2-I3R3=e1+e2-e3

     1.8. Измерение тока и разности потенциалов цепи

Силу электрического тока в цепи измеряют амперметром (от «ампер» и греческого metreo — измеряю), который включается в цепь последовательно по отношению к тому участку, в котором измеряется ток.



     Рис.12


     Так как сам амперметр обладает сопротивлением Лд, то при его включении сопротивление всей цепи возрастает, а ток в ней уменьшается при неизменном напряжении в соответствии с зако­ном Ома. Чем меньше сопротивление амперметра, тем меньше изменяется ток в цепи при включении в нее амперметра и тем точнее его показания. Следовательно, сопротивление ампер­метра должно быть очень малым. Амперметр нельзя подключать к сети без нагрузки, т.к. произойдет короткое замыкание.

     Любой амперметр рассчитан на измерение сил токов до некоторого rмаксимального значения 1д, т.е. имеет верхний предел измерений. В соответствии с этим различают микро -, милли-, кило - и наноампер-метры. Для измерения токов, боль­ших, чем те, на которые рассчитан амперметр, параллельно ему вклю­чается резистор Лщ, называемый шунтом.


     Рис.13


     Сопротивление шунта в несколько раз меньше, чем собствен­ное сопротивление амперметра Дд, поэтому большая часть изме­ряемой силы тока I пройдет через шунт. Через амперметр должен идти ток, не превышающий Jg, причем эта сила тока меньше измеряемой силы тока I в п раз.

Следовательно, цена деления прибора (нижний предел измере­ний) возрастет в га раз, а его чувствительность уменьшится в п раз.

Нужное сопротивление шунта к амперметру можно рассчи­тать, применяя правила параллельного соединения проводников. При параллельном соединении напряжение на шунте [7щ и амперметре 1/д одинаково 17щ -= Уд.


     Рис.14


     Прибор для измерения разности потенциалов (напряжения) между любыми двумя точками проводника         R с током называется вольтметром (от «вольт» и греческого metreo — измеряю). Вольтметр включается в цепь  параллельно тому участку цепи, на  котором измеряется напряжение.

Вольтметр обладает сопротивлением Ry После его включения в цепь сопротивление всей цепи уменьшается, а ток в ней увели­чивается. Следовательно, сопротивление вольтметра должно быть достаточно большим по сравнению с сопротивлением участ­ка цепи, на котором измеряется напряжение. При этом ток в вольтметре будет мал и не внесет заметных искажений в измеряе­мое напряжение. Вольтметр можно включать в сеть, если он рас­считан на напряжение, превышающее напряжение сети.

    Любой вольтметр рассчитан на предельное напряжение U"„. Для расширения пределов измерения напряжений вольтметра пользуются добавочными сопротивлениями, которые присоеди­няют последовательно вольтметру. Величину добавочного сопро­тивления -Кд, необходимого для измерения напряжений в п раз больших, чем те, на которые рассчитан прибор, найдем согласно правилам последовательного соединения проводников. Измеряемое напряжение U = Uy • п равно также сумме напряже­ний, приходящихся на вольтметр (UВ = U /nи на добавочное сопротивление U д:



     Рис.15


U-U.+U,

     Цена деления вольтметра и его пределы измерения увеличи­ваются в га раз, при этом его чувствительность уменьшается во столько же раз.

При последовательном соединении в вольтметре и добавочном сопротивлении устанавливается один и тот же ток

1=1в=1д,.

     1.9 Работа и мощность электрического тока. Закон Джоуля-Ленца.


Работу сил электрического поля, создающего упорядоченное движение заряженных частиц в проводнике, т.е. электрический ток, называют работой тока.

Работа, совершаемая электрическим полем по перемещению заряда q на участке цепи, равна:

и3

A=q•U=I•U•t=I2*R•t= U2/R*t

где I — сила тока на данном участке, U — напряжение на участке цепи, t — время прохождения тока по участку цепи, q == It — электрический заряд (количество электричества), протекающий через поперечное сечение проводника за промежуток времени t. Единицей измерения работы служит джоуль: 1 Дж = 1 А* 1 В* 1 с. 1 Дж есть работа постоянного тока силой в 1 А в течение 1 с на участке напряжением в 1 В.

По закону сохранения энергии эта работа равна изменению энергии проводника.

     Мощность электрического тока при прохождении его по про­воднику с сопротивлением R равна работе, совершаемой током за единицу времени:

P=A/t=I*U=U2*R

     Единицей измерения мощности электрического тока в СИ служит ватт: 1 Вт = 1 Дж/с. Работу тока можно также определить следующим образом:

A=P*t

Единицей измерения работы также является киловатт-час (кВт • ч) или ватт-час (Вт • ч):

1Вт*ч=3.6*102 Дж

В этих единицах работу обычно выражают в электротехнике. Полную мощность, развиваемую источником тока с ЭДС  и внутренним сопротивлением г, когда во внешней цепи включена нагрузка с сопротивлением R, определяют по формуле:

P=I(R+r) =IR+Ir=I*I*(R+r) =Ie

Полная мощность идет на выделение тепла во внешнем и внутреннем сопротивлении.

Полезная мощность (мощность, выделяемая во внешнем со­противлении) равна:

Pполез=I2R=e2R/(R+r)2

Она используется в электронагревательных и осветительных приборах.

Теряемая мощность (мощность, выделяемая во внутреннем сопротивлении) равна:

Pтер=I2r=e2r/(R+r)2

Она не используется.

Мощность тока во всей внешней цепи при любом соединении равна сумме мощностей на отдельных участках цепи.

Работа электрического поля приводит к нагреванию провод­ника, если на участке цепи под действием электрического поля не совершается механическая работа и не происходят химические превращения веществ. Поэтому энергия (количество теплоты), выделяемая на данном участке цепи за время t, равна работе электрического тока:

Q=A

Количество теплоты, выделяющееся проводником при нагре­вании его током, определяют по закону Джоуля-Ленца:

Q = I2 Rt или

 Q=I *U * t

Этот закон был установлен экспериментально английским ученым Джеймсом Джоулем (1818-1889) и русским ученым Эмилием Христиановичем Ленцем (1804—1865) и сформулирован сле­дующим образом.

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

При последовательном соединении проводников с сопротив­лением R1 и R2 количество теплоты, выделенное током в каждом проводнике, прямо пропорционально сопротивлению этих про­водников:

 Q1/Q2 =R1/R2, т.к. I1 = I2 при последовательном соединении

Количество теплоты, выделенное током в параллельно соеди­ненных двух участках цепи без ЭДС с сопротивлениями 2^ и И^, обратно пропорционально сопротивлению этих участков:

Q1/Q2 =R1/R2, т.к.  U1 = U2 при параллельном соединении

     1.10. Электрический ток в металлах.

     Прохождение тока через металлы (проводники I рода) не со­провождается химическим изменением, следовательно, атомы металла не перемещаются вместе с током. Согласно представле­ниям электронной теории, положительно заряженные ионы (или атомы) составляют остов металла, образуя его кристаллическую решетку. Электроны, отделившиеся от атомов и блуждающие по металлу, являются носителями свободного заряда. Они участву­ют в хаотическом тепловом движении. Эти свободные электроны под действием электрического поля начинают перемещаться упорядоченно с некоторой средней скоростью. Таким образом, прово­димость металлов обусловлена движением свободных электро­нов. Экспериментальным доказательством этих представлений явились опыты, выполненные впервые в 1912 г. советским акаде­миком Леонидом Исааковичем Мандельштамом (1879-1944) и Николаем Дмитриевичем Папалекси (1880-1947), но не опубли­кованные ими. Позже в 1916 г. американские физики Т.Стюарт и Ричард Чейс Толлин (1881-1948) опубликовали результаты своих опытов, оказавшихся аналогичными опытам советских ученых.

     Концы проволоки, намотанной на катушку, припаивают к двум изолированным друг от Друга металлическим дискам. При помощи скользящих контактов (щеток) к концам дисков присо­единяют гальванометр.

     Катушку приводят во вращение, а затем резко останавлива­ют. Если предположить, что в металле есть свободные заряды, то после резкой остановки катушки свободные заряженные частицы будут двигаться некоторое время относительно проводника по инерции. Следовательно, в катушке возникнет электрический ток, который из-за сопротивления проводника будет длиться не­большое время. Направление этого тока позволит судить о знаке тех частиц, которые двигались по инерции. Так как возникаю­щий ток зависит от величины и массы зарядов, то этот опыт по­зволяет не только предположить существование в металле свобод­ных зарядов, но и определить знак зарядов, их массу и величину (точнее, определить удельный заряд — отношение заряда к массе).

Страницы: 1, 2, 3



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.