Содержание
Введение
1. Расчёт токов симметричного трехфазного короткого замыкания в точке К1
1.1 Приближенное приведение в относительных единицах для точки К1
1.1.1 Расчёт реактивного сопротивления элементов
1.1.2 Расчёт активного сопротивления элементов
1.1.3 Расчёт токов короткого замыкания в точке К1
1.2 Точное приведение в относительных единицах для точки К1
1.2.1 Расчёт реактивного сопротивления элементов
1.2.2 Расчёт активного сопротивления элементов
1.2.3 Расчёт токов короткого замыкания в точке К1
2. Расчёт токов симметричного трехфазного короткого замыкания в точке К5
2.1 Точное приведение в именованных единицах
2.1.1 Расчёт реактивного сопротивления элементов
2.1.2 Расчёт активного сопротивления элементов
2.1.3 Расчёт токов короткого замыкания в точке К5
3. Сравнение результатов приближенного и точного расчетов
4. Расчет полного тока короткого замыкания
5. Построение векторных диаграмм
6. Расчёт теплового импульса
7. Расчет токов несимметричного короткого замыкания в точке К5
7.1 Определение параметров схемы замещения прямой последовательности
7.2 Определение параметров схемы замещения обратной последовательности
7.3 Определение параметров схемы замещения нулевой последовательности
7.4 Определение токов и напряжений в месте повреждения К5
7.4.1 Однофазное короткое замыкание
8. Расчет токов несимметричного короткого замыкания в точке К1
8.1 Определение параметров схемы замещения прямой последовательности
8.2 Определение параметров схемы замещения обратной последовательности
8.3 Определение параметров схемы замещения нулевой последовательности
8.4 Определение токов и напряжений в месте повреждения К1
8.4.1 Двухфазное короткое замыкание на землю
Курсовая работа выполняется по теме «Расчет симметричных и несимметричных коротких замыканий в электроэнергетической системе»
В работе рассчитываются токи и напряжения при симметричном и несимметричном коротких замыканиях (КЗ).
В объем работы входит выполнение двух разделов на основе заданной на рис. 1 схемы электрической системы. Для всех разделов полагать, что исходным установившимся режимом станции, который предшествует рассматриваемому КЗ, является номинальный режим эквивалентного генератора с выдачей им номинальной мощности при номинальном напряжении на шинах.
Начальные условия:
Рисунок 1. - Схема ЭЭС и расчетные точки КЗ
Напряжения на шинах:
Генераторы: ; ; ; ;
Трансформаторы:; ;
Автотрансформаторы:
Линии электропередач:
Реактор: РТСТДГ – 10 – 4000 – 0,1
Система:
Таблица 1.1. - Параметры трансформаторов:
Тип
S,МВА
Uном обмоток, кВ
Uk%
∆РkкВт
∆РхкВт
ВН
НН
ТДЦ-250000/110
250
121
15,75
10,5
640
200
ТДЦ-250000/500
525
13
600
ТРДН-40000/110
40
115
6,3
172
36
ТДЦ-125000/110
125
13,8
400
120
ТДН-16000/110
16
6,5;11
85
19
Таблица 1.2. - Параметры генераторов:
Тип ген.
P,МВт
U,кВ
n, об/мин
ОКЗ
,%
КПД
ТЗВ-63
53
66,3
0,8
3000
0,53
20,6
98,4
ТЗВ-110-2
110
137,5
0,6
22,7
98,6
ТЗВ-220-2
220
258,8
0,85
0,51
24,6
98,8
Таблица 1.3. - Параметры автотрансформатора:
СН
ВН-СН
ВН-НН
СН-НН
АТДЦТН-250000/500/110
500
38,5
24
1. Расчет токов симметричного трехфазного к. з. в точке К1
1.1 Приближенное приведение в относительных единицах для т. к.з. К1
Принимаем SБ = 1000 МВА; U cр1 = 6,3 кВ; U cр2 = 115 кВ; U cр3 = 515 кВ.
Рисунок 1.1. - Расчётная схема замещения
1.1.1 Определение реактивных сопротивлений элементов
Расчет автотрансформаторов АТ 1 и АТ 2:
Где UК – напряжение короткого замыкания; SH – номинальная полная мощность трансформатора.
Расчет сопротивлений трансформаторов:
Т1:
Т2:
Т3:
Т4:
Т5:
Расчет сопротивлений линий электропередач:
Где UСР – среднее напряжение РУ; Худ – удельное сопротивление линии; l – длина ЛЭП.
Расчет сопротивлений генераторов:
G1,2:
G3:
G4:
Где Х// – относительное сопротивление генератора; SH,Г – номинальная полная мощность генератора.
Расчет сопротивлений реакторов:
;
Где Х – относительное сопротивление реактора.
Сопротивление системы:
1.1.1.1. Расчёт сверхпереходных ЭДС источника
При применении системы относительных единиц , .
Система является источником бесконечной мощности, поэтому
1.1.1.2 Преобразование схемы к простейшему виду относительно точки к. з. К1
Рисунок 1.2. – Упрощенная схема замещения
Используем метод коэффициентов участия:
Определим коэффициенты участия:
Рисунок 1.3 – Лучевая схема замещения
Обьединим источники :
Рисунок 1.4 – Лучевая схема замещения
Приведем лучевую схему к сопротивлению одной ветви:
Рисунок 1.5. – Результирующая схема замещения
1.1.2 Определение активного сопротивления
Рисунок 1.6. – Схема замещения
Где ∆Ркз – изменение активного сопротивления короткого замыкания.
W1:
W2:
W3:
W4:
Где UСР – среднее напряжение РУ; r0 – удельное сопротивление линии;
l – длина ЛЭП.
G1:
G2:
Где Х – относительное реактивное сопротивление генератора; ω – частота;
ТА – постоянная времени.
Активное сопротивление реакторов не учитывается.
1.1.2.1. Преобразование схемы к простейшему виду относительно точки к. з. К1
Рисунок 1.7. – Упрощенная схема замещения
Рисунок 1.8. – Результирующая схема замещения
1.1.3 Определение токов короткого замыкания в точке К1
Найдём значение базисного тока:
Определение начального периодического тока к. з.:
Расчет ударного тока:
Где - ударный коэффициент принимается для элементов или части энергосистемы; - значение постоянной времени затухания апериодической составляющеё тока КЗ.
Определение апериодической составляющей тока к. з.:
Где - время размыкания контактов.
Определение периодической составляющей тока к. з.:
т. к. Е1 - источник бесконечной мощности.
т. к. принимаем
1.2 Точное приведение в относительных единицах для т. к. з. К1
SБ = 1000 МВА;
В качестве основной принимаем ступень, где происходит к.з.:
U б1 = 110 кВ; U б2 = U б1 /К Т1 = 110*500 /121 = 455 кВ;
U б3 = U б1 /К Т2 = 110*500 /121 = 455 кВ;
U б4 = U б1 /К Т2*КТ3 = 110*500/121*15,75 /525 = 13,64 кВ;
U б5 = U б1 /К Т = 110*15,75 /121 = 14,32 кВ;
U б6 = U б1 /К Т = 110*6,3 /115 = 6,03 кВ;
U б7 = U б1 /К Т = 110*13,8 /121 = 12,55 кВ;
1.2.1 Определение реактивных сопротивлений элементов
Т1 Т2:
1.2.1.1 Преобразование схемы к простейшему виду относительно точки к. з. К1
Упрощенная схема замещения аналогична приближенному приведению.
Рисунок 1.9 – Лучевая схема замещения
Рисунок 1.10. – Лучевая схема замещения
Рисунок 1.11. – Результирующая схема замещения
1.2.2 Определение активного сопротивления
Схема замещения аналогична приближенному приведению.
1.2.2.1 Преобразование схемы к простейшему виду относительно точки к. з. К1
Рисунок 1.12. – Результирующая схема замещения
1.2.3 Определение токов короткого замыкания в точке К1
2. Расчет токов симметричного трехфазного к. з. в точке К5
2.1.1 Определение реактивного сопротивления элементов
В качестве основной принимаем ступень, где происходит к.з. Uосн=110 кВ.
1.1.1.1 Фазное значение ЭДС генератора
1.1.2 Преобразование схемы к простейшему виду относительно точки к. з. К5
Обьединим источники Е2…Е9 с Е10…Е11
Рисунок 2.1. – Упрощенная схема замещения
Рисунок 2.2. – Лучевая схема замещения
Рисунок 2.3. – Результирующая схема замещения
2.1.2 Определение активного сопротивления
Приведем схему замещения к точке к. з. К5
Т2
Рисунок 2.4. – Результирующая схема замещения
2.1.3 Определение токов короткого замыкания в точке К5
Таблица 3.1. - Сравнение результатов приближенного и точного расчетов
Место к.з.
Привед.
К1
К5
IПО, кА
iуд, кА
iаτ, кА
Iпτ, кА
точное
18,511
31,65
0,83
15,757
30,1
8,675
приближенное
20,43
34,72
0,81
-
Все величины токов, полученные точным методом,незначительно отличаются от величин токов, которые были найдены при приближенном решении.
Для t = 0 с
Для t = 0,1 с
Для t = 0,2 с
Для t = 0,3 с
Векторные диаграммы.
Точка КЗ К1:
Точка КЗ К5:
Схема прямой последовательности составляется так же, как для расчета симметричного режима.
Схема обратной последовательности по конфигурации аналогична схеме прямой последовательности. Отличие состоит лишь в том, что в данном случае ЭДС всех генерирующих ветвей принимаются равными нулю.
Рисунок 7.1. – Схема замещения обратной последовательности
7.3 Определениепараметров схемы замещения нулевой последовательности
Схема нулевой последовательности существенно отличается от схем прямой и обратной, так как путь ее токов отличается от пути, по которому циркулируют токи прямой и обратной последовательностей.
Индуктивное сопротивление двухцепной линии без тросов:
Индуктивное сопротивление одноцепной линии без тросов:
Рисунок 7.2. – Схема замещения нулевой последовательности
Рисунок 7.3. – Схема замещения прямой последовательности
Преобразуем к одной ветви:
Рисунок 7.4. – Результирующая схема замещения
7.4 Определение токов и напряжений всех трех последовательностей в месте повреждения К5
Граничные условия: ; ; ;
Ток прямой последовательности:
Ток обратной и нулевой последовательности:
Полный ток в поврежденной фазе:
Составляющие напряжений:
Построение диаграмм:
Рисунок 8.1. – Схема замещения обратной последовательности
Рисунок 8.2. – Схема замещения нулевой последовательности
Рисунок 8.3. – Схема замещения прямой последовательности
Используем метод коэффициента распределения:
Рисунок 8.4. – Результирующая схема замещения
8.4 Определение токов и напряжений всех трех последовательностей в месте повреждения К1
Граничные условия: ; ;
;;
Токи поврежденных фаз: