ПВД7
Энтальпия пара на входе в П7 из 1-го отбора :
hП7=2645,4 кДж/кг
Энтальпия спива ПП2 на входе в П7:
hслПП2вхП7= hслПП2. ηпот 7 =1206,5 кДж/кг
Параметры спива на выходе из П7:
tслП7= tS,П6=f(pп6)= 205 °С
hсл п7=f(pп7,tП7)= 875,25 кДж/кг
Для определения разности энталпий ПВ на входе и выходе П7 используется cp.Δt
cp=4.19 кДж/кг
Δt=17 °С
Количество пара 1-го отбора на входе П7 определяется на основании совместного решения уравнений теплового и материального баланса П7. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DI.hП7+Dпп2. hслПП2вхП7=GПВ ср Δt+(Dпп2+DI)hсл п7
Из этого уравнения определим DI
DI=[GПВ ср Δt-Dпп2.( hслПП2вхП7-hслП7)]/(hП7-hсл п7)
DI=72,634-0,007*Y
ПВД6
Энтальпия пара на входе в П6 из 2-го отбора :
hП6=2594,9 кДж/кг
Энтальпия спива ПП1 на входе в П6:
hслПП1вхП6= hслПП1. ηпот 6 =958,14 кДж/кг
Параметры спива на выходе из П6:
tслП6= tS,П5=f(pп5)= 188 °С
hсл п6=f(pп6,tП6)= 798,9 кДж/кг
Для определения разности энталпий ПВ на входе и выходе П6 используется cp.Δt
Количество пара 2-го отбора на входе П6 определяется на основании совместного решения уравнений теплового и материального баланса П6. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DII.hП6+Dпп1. hслПП1вхП6+(DI+Dпп2).hслп7=GПВ.срΔt+(DII+Dпп1+Dпп2+DI).hсл п6
Из этого уравнения определим DII
DII=[GПВ ср Δt+Dпп1.(hслп6- hслПП1вхП6)+(DI+Dпп2).(hслп6-hслп7)]/(hП6-hсл п6)
DII=68,501-0,004*Y
ПВД5
Энтальпия пара на входе в П5 из 3-го отбора :
hП5=2542,3кДж/кг
Энтальпия спива сепаратора на входе из П5:
hсл свхП5= hсл c. ηпот 5 =803,95 кДж/кг
Температура дренажа греющего пара на выходе из подогревателей зависит от наличия в нем охладителя дренажа. Для подогревателей без охладителей дренажа температура дренажа равна температуре насыщения греющего пара в подогревателе. Для подогревателей с охладителями дренажа температура дренажа определяется по температуре обогреваемой среды на выходе из предыдущего подогревателя (подогревателя с меньшим значением давления отборного пара) с учетом минимального температурного напора на холодном конце охладителя дренажа и приращения температуры воды в смесителе, если он есть.
tдр j = ts j + d t (21)
tдр j – температура дренажа греющего пара на выходе из j-го подогревателя;
ts j – насышенная температура обогреваемой среды;
d.t–минимальный температурный напор на холодном конце охладителя дренажа (d tод = 5 ¸ 12 °С [3]);
δt=10 °С
tП5= tS,П5-δt =178 °С
Параметры спива на выходе из П5:
hсл п5=f(pп5,tП5)= 754,5 кДж/кг
Для определения разности энталпий ПВ на входе и выходе П5 используется cp.Δt
Количество пара 3-го отбора на входе П5 определяется на основании совместного решения уравнений теплового и материального баланса П5. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DIII.(hП5-hсл п5)+Gc.( hсл свхП5-hсл п5)+(DII+Dпп1+Dпп2+DI).(hслп6-hслп5)=GПВ ср Δt
Из этого уравнения определим DIII
DIII=[GПВ ср Δt-Gc.( hсл свхП5-hсл п5)-(DII+Dпп1+Dпп2+DI)(hслп6-hслп5)]/(hП5-hсл п5)
DIII=68,410-0,003*Y
Расчет процессов в деаэраторе
Энталпия выпора определяется выражением
hвыпор = hп х+ hвозд (1-х) ≈h"д=f(pд)
hвыпор≈h"д=f(pд)= 2762,1 кДж/кг
Энтальпия спива деаэратора:
hсл д=h'д=f(pд)= 694,4 кДж/кг
Энтальпия пара на деаэратор из 3-го отбора:
hд пар=hп5=2542,3 кДж/кг
Энтальпия основного конденсата при давлении примерно на 0,2 МПа выше давления в деаэраторе и температура перед деаэратором:
hОК=649,6 кДж/кг
Количество пара 3-го отбора на входе деаэратора определяется на основании совместного решения уравнений теплового и материального баланса деаэратора. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
G’ОК=GПВ+Dвыпор -DII-Dпп1-Dпп2-DI-DIII-Gс-Dд
Dвыпор=0.005 *GПВ
Dд.hд пар+(DII+Dпп1+Dпп2+DI+DIII+Gс)hслП5+G’ОК.hОК=GПВhсл д+Dвыпор.hвыпор
Из этого уравнения определим Dд
Dд=[GПВ(hсл д+0.005hвыпор-hок)+(DII+Dпп1+Dпп2+DI+DIII+Gс)(hок-hслП5)]/(hд пар-hОК)
Dд=41,114-0,009*Y
Теперь поставляя полученные уравнения для определения значения Y в уравнениях
G'ОК=1.005GПВ-DII-Dпп1-Dпп2-DI-DIII-Gс-Dд
G'ОК=Y-Gс
G'ОК=1563,397-0,13 * Y
G'ОК=0,890 *Y
получим
Y=1532,3 кг/с
и следовательно
Gc=168,7кг/с
Dпп1вх=68,8 кг/с
Dпп2вх=75,5 кг/с
DI=61,6 кг/с
DII=62,7 кг/с
DIII=63,7 кг/с
Dд=27,2 кг/с
GПВ=1882,5 кг/с
G’ОК=1363,7 кг/с
D=D0+DПП= 1836,4 кг/с
Расчет процессов в ПНД
ПНД4
Энтальпия пара на входе в П4 из 4-го отбора :
hП4=2823,2 кДж/кг
tS,П4=158 °С
hсл п4=f(pп4,tП4)= 666,9 кДж/кг
Количество пара 4-го отбора на входе П4 определяется на основании совместного решения уравнений теплового и материального баланса П4. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DIV.(hП4-hсл п4)= G’ОК.срΔt
Из этого уравнения определим DIV
DIV= G’ОК.срΔt/(hП4-hсл п4)
DIV=84,8 кг/с
ПНД3
Энтальпия пара на входе в П3 из 5-го отбора :
hП3=2694,5 кДж/кг
Параметры спива на выходе из П3:
tS,П3=128 °С
hсл п3=f(pп3,tП3)= 537,8 кДж/кг
Количество пара 5-го отбора на входе П3 определяется на основании совместного решения уравнений теплового и материального баланса П3. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DV.hП4+DIVhсл п4-(DV+DIV)hсл п3=( G’ОК -DV-DIV)срΔt
Из этого уравнения определим DV
DV= G’ОК.срΔt-DIV(hсл п4-hсл п3+срΔt)/(hп3-hсл п3+срΔt)
DV=65,6 кг/с
ПНД2
Энтальпия пара на входе в П2 из 6-го отбора :
hП2=2418,4 кДж/кг
Параметры спива на выходе из П2:
tS,П2=98 °С
hсл п2=f(pп2,tП2)= 410,6 кДж/кг
Количество пара 6-го отбора на входе П2 определяется на основании совместного решения уравнений теплового и материального баланса П2. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DVI.(hП2-hсл п2)=( G’ОК -DV-DIV).срΔt
Из этого уравнения определим DVI
DVI=( G’ОК -DV-DIV).срΔt/(hП2-hсл п2)
DVI=70,9 кг/с
ПНД1
Энтальпия пара на входе в П1 из 7-го отбора :
hП1= 2415,9 кДж/кг
Параметры спива на выходе из П1:
tS,П1= 68 °С
hсл п1=f(pп1,tП1)= 284,64 кДж/кг
Количество пара 7-го отбора на входе П1 определяется на основании совместного решения уравнений теплового и материального баланса П1. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DVII.hП1+DVIhсл п2-(DVI+DVII)hсл п1=( G’ОК -DV-DIV-DVI-DVII)срΔt
Из этого уравнения определим DVII
DVII=( G’ОК -DV-DIV)срΔt-DVI(hсл п2-hсл п1+срΔt)/(hп1-hсл п1+срΔt)
DVII=59,7 кг/с
Расход оснавного канденсата после канденсатора
Gok= G’ОК -DIII-DIV-DII-DI
Gok=1082,9 кг/с
С помощью полученных значений расходов получим расход на входе ЦСД:
D0ЦСД=(Y-Gc)-DТП= 1346,6 кг/с
Промышленность и население необходимо снабжать не только электроэнергией, но и теплотой. Аналогично передаче электроэнергии по электрическим сетям, для подачи теплоты к потребителям существуют тепловые сети. Основным носителем теплоты для горячего водоснабжения и отопления является горячая вода. Соответствующая схема установки теплоснабжения показана на рис. 4. для случая, когда тепловая сеть представляет собой замкнутый контур, образованный подающей и обратной магистралями. Для циркуляции воды предусмотрен сетевой насос. Для восполнения убыли воды в связи с ее утечками и расходованием на бытовые нужды предусмотрена установка подготовки добавочной воды.
Вода подогревается в нескольких последовательных сетевых подогревателях. В теплоэнергетике принято осуществление этого подогрева в основном за счет теплоты
пара, частично проработавшего в турбине. Поэтому кроме конденсационных электростанций развиваются также теплоэлектроцентрали(ТЭЦ). Теплофикация, т. е. комбинированная выработка электроэнергии и теплоты, является характерной чертой отечественной энергетики.
Рис. 4. Схема установки теплоснабжения:
1— сетевой насос;2— основной сетевой подогреватель;3— греющая среда основного сетевого подогревателя;4— пиковый сетевой подогреватель;5— греющая среда пикового сетевого подогревателя;6— подающая магистраль сетевой воды;7— тепловой потребитель;8— обратная магистраль сетевой воды;9— продувка тепловой сети;10 — подпиточный сетевой насос;11 — установка подготовки добавочной воды теплосети.
В этой работе задана теплофикационая установка, которая паказана на рис.5.
Рис.5. теплофикационая установка
Прямая и обратная температура в теплофикационой установке:
tпр=110 °С
tобр=65 °С
Количество сетевых подогревателей n=3.
Нагрев сетевой воды в каждом подогревателе:
ΔtСП=(tпр-tобр)/n=15.0 °С
Температуа сетевой воды в узловых точках теплофикационой установки
tСП1=tобр+ΔtСП=80.0 °С
tСП2=tСП1+ΔtСП=95.0 °С
tСП3=tСП2+ΔtСП=110.0 °С
Расход сетевой воды в теплофикационой установке:
GСП=QТП/[cp(tпр-tобр)]= 609,9 кг/с
По полученным температурам сетевой воды выбераем отборы турбиы, соответствующие с этими температурами. По параметрам отборов определяються энталпии слива из каждого подогревателя:
hсл СП3=h"=f(pV)= 548,79 кДж/кг
hсл СП2=h"=f(pV)= 548,79 кДж/кг
hсл СП1=h"=f(pVI)= 420,80 кДж/кг
Количество пара каждого отбора на входе подогревателей определяется на основании совместного решения уравнений теплового и материального баланса подогревателей. Запишем уравнение ТБ сепратора, учитывающее материальный баланс.
DСП3=GСП.ср.ΔtСП/(hV-hсл СП3)= 17,75 кг/с
DСП2=GСП.ср.ΔtСП-DСП3(hсл СП3-hсл СП2)/(hV-hсл СП2)= 17,75 кг/с
DСП1=GСП.ср.ΔtСП-DСП2(hсл СП2-hсл СП1)/(hVI-hсл СП1)= 16,81 кг/с
Существуют различные подходы при расчетах тепловых схем турбоустановок по способу задания исходных данных, по определению мощности и потоков пара и воды в элементах тепловой схемы. В [1] анализируются 4 способа задания исходных данных и определяемых величин. Так, например, если задается расход пара на турбину D0, то определяемой величиной при расчете тепловой схемы является электрическая мощность турбоустановки Nэ, и наоборот. При исходном задании величины пропуска пара в конденсатор турбины DK, определяемыми величинами являются D0, и Nэ.
Внутренная Мощность турбины
Наминальный расход пара перед СРК по[4] состовляет D=1836,4 кг/с
Протечки пара через уплотнения штоков клапанов турбины DпрКл=1.8 кг/c
Расход пара через СПП:
DПП2=75,5 кг/c
DПП1=68,8 кг/c
DС=Y=1532,3 кг/c
Протечки пара через уплотнения ЦСД ; DуплКл-ЦНД=1.4 кг/c
Расход пара на входе в ЦСД; D0ЦСД=1346,6 кг/c
Количество пара каждого подогревателя
DСП1=16,71 кг/c
DСП2=17,75 кг/c
DСП3=17,75 кг/c
расход пара через отсек
Dотс1=D0-DПП2-DпрКл=1759,0 кг/c
Dотс2=Dотс1-DПП1-DI= 1628,6 кг/c
Dотс3=Dотс2-DII= 1565,9кг/c
Dотс4=Dотс3-DIII-Dтп-Gc-Dд-DуплКл-ЦСД= 1314,1 кг/c
Dотс5=Dотс4 -DIV= 1229,74кг/c
Dотс6=Dотс5-DСП2-DСП3-DV-DуплКл-ЦНД = 1125,8 кг/c
Dотс7=Dотс6-DСП1-DVI= 1038,2 кг/c
Dотс8=Dотс7-DVII= 978,5 кг/c
Энталпия рабочего тела после СПП; hПП2= 2937,1 кДж/кг, за ЦНД hk= 2230,5 кДж/кг и перед ЦВД h0= 2776,5 кДж/кг
теплоререпад отсека
Δhотс1=h0-hI= 128,5 кДж/кг
Δhотс2=hI-hII= 47,9 кДж/кг
Δhотс3=hII-hIII= 50,2 кДж/кг
Δhотс4=hПП2-hIV= 102,6 кДж/кг
Δhотс5=hIV-hV= 126,4 кДж/кг
Δhотс6=hV-hVI= 129,4 кДж/кг
Δhотс7=hVI-hVII= 145,6 кДж/кг
Δhотс8=hVII-hk= 202,5 кДж/кг
Используя полученые значения, получаем внутреннюю мощность турбины:
Wi=Σ(Dотсj.Δhотсj)= 1168,0 МВт
КПД генератора и механический КПД турбогенератора приняты соответственно
ηмех= 0.99
ηг= 0.988
мощность на клеммах генератора
Nэ.расч=Wi.ηмех.ηг= 1142,4 МВт
Гарантированная мощность
Nэ=0.98Nэ.расч= 1119,6 МВт
Расход электроэнергии на привод насосов
КПД электроприводов всех наэсов[1]; ηпр= 0.86
Раход рабочего тела через конденсатные и дренажные насосы
Dк= 1082,7 кг/c
DдрП1= 130,6 кг/c
DдрП3= 150,4 кг/c
Повышение энтальпии воды в насосах
ΔhДН1= 2,0 кДж/кг
ΔhДН2= 1.9 кДж/кг
ΔhКН1= 3.2 кДж/кг
ΔhКН2= 3.4 кДж/кг
Для конденсатных насосов перого подъема
NКН1=ΔhКН1.Dk/ηпр= 4,066 МВт
Для конденсатных насосов втоого подъема
NКН2=ΔhКН2.Dk/ηпр= 4,243 МВт
Для дренажных насосов ДН1
NДН1=ΔhДН1.DдрП1/ηпр= 0,304 МВт
Для дренажных насосов ДН2
NДН2=ΔhДН2.DдрП3/ηпр= 0,0337 МВт
Суммарный расход электроэнергии на собственные нужды турбоустановки
NЭ.С.Н=ΣNi= 9,0 МВт
Показатели тепловой экономичности
Расход теплоты на турбоустановку для производства электроэнергии
QЭ=D0(h0-hПВ)-QТ= 3206,6 МВт=11543651,5 МДж/ч
где hп.в -энтальпия питательной воды;
QТ -количество теплоты, отведенной от турбины для внешнего потребления.
Удельный расход теплоты брутто на производство электроэнергии
qЭ=QЭ/(NЭ+NТП)= 10,2 МДж/(кВт.ч)
Электрический КПД брутто
ηЭ=(NЭ+NТП)/QЭ= 36,0 %
Электрический КПД нетто
ηЭ.НТ=(NЭ-NС.Н)/QЭ= 34,6 %
Тепловые расчеты регенеративных подогревателей выполняются 2-х типов: конструктивный и поверочный. При конструкторском расчете определяются поверхность нагрева и конструктивные размеры подогревателя. При поверочном расчете определяется температура одного из теплоносителей или величины подогрева.
В этой работе разберем методику конструкторского теплового расчета. Исходные данные определяются из расчета тепловой схемы или по справочным данным. К ним относятся расход и параметры греющей среды (пара), расход нагреваемой среды (ОК или ПВ), их давление и температуры на входе в подогреватель.
При выполнении тепловых расчетов количество передаваемой теплоты в отдельных элементах подогревателей оценивается по температурам греющей и нагреваемой сред. Так, температура среды на выходе из охладителя конденсата оценивается по формуле:
Tдр = tв’+(5÷10) ºC, где tв’ – температура воды (ОК, ПВ) на входе в подогреватель.
Рис.6. Схема движения сред в ПВД (а) и график изменения температур теплоносителей (б).
ОК – охладитель конденсата;
СП – собственно подогреватель
Из рис.6 видно, что для уменьшения габаритов (размеров) охладителя конденсата через него пропускается только часть воды, проходящей через ПВД (10–20 %).
Минимальный температурный напор в собственно подогревателе, равно как и минимальный температурный напор в охладителе дренажа, выбираются на основании технико-экономического обоснования.
Расход греющего пара Dп7=61,61кг/с
давление пара pп7=2,409 МПа
расход питательной воды Gпв=1882,5 кг/с
температура питательной воды на входе tвхпв= 198 ⁰С
температура питательной воды на выходе tвыхпв=215 ⁰С
доля питательной воды, проходящей через охладитель дренажа Dпвод=20% Gпв
давление питательной воды pпв= 8 МПа
диаметр и толщина стенок трубок dв* δ=24*4 мм
наружный диаметр трубок dн= 32 мм
материал трубок – сталь 20.
Расход слива ПП2 Dпп2= 75,5 кг/с
энталпия слива ПП2 hпп2=1195.7 кДж/кг
Расход греющей среды Dп=Dп7+Dпп2=137,1 кг/с
коэффициент, учитывающий потери теплоты в окружающую среду ηтп= 0.98
Параметры сред в п 7:
Греющий пар:
tп= 222 °С
hn= 2773,6 кДж/кг
hk= 952,9 кДж/кг
Питательная вода:
hвхпв= 846,2 кДж/кг
hвыхпв=922,5 кДж/кг
Определим энтальпию ПВ в точке смешения двух потоков ПВ (ОД + СП)
hc=hвыхпв-[(Dn7.(hп-hk)+Dпп2.(hпп2-hk))ηтп/Gпв]= 854,6 кДж/кг
tc= 199,89 °С
Параметры переохлажденного конденсата определим по УТБ составленного для «черного ящика» (см. схему), в который входят потоки ОК и конденсата греющего пара, а выходят поток ОК с температурой смеси и слив (дренаж) греющего пара П7. Сделано это для того, чтобы избежать решение системы 2–3 уравнений ТБ (в зависимости от числа неизвестных параметров.
hдр=hк-[Gпв(hс-hвхпв)/(Dп.ηтп)]= 929,4 кДж/кг
tдр= 216,9 °С
Расход питательной воды через охладитель дренажа:
Gод= 375,5 кг/с
Параметры питательной воды на выходе из охладителя дренажа определяем по уравнению ТБ для этого элемента:
hвых.одпв=hвхпв+[Dn.(hк-hдр)/Gод]= 854,7 кДж/кг
tвых.одпв= 199,93 °С
Расчет собственно подогревателя:
Тепловой поток:
Qсп=Gпв.(hвыхпв-hс)= 127903,8 кВт
Среднелогарифмический температурный напор:
Δtб=tп-tc= 22,1 °С
Δtм=tп-tвыхпв= 7 °С
Δtср=(Δtб-Δtм)/ln(Δtб/Δtм)= 13,1 °С
Принимаем скорость движения воды в трубках по рекомендациям (1,5...2,5 м/с)
W= 1.5 м/с
Средняя температура питательной воды:
tв.ср=0.5(tвыхпв+tс)= 207,4 °С
Теплофизические параметры для ПВ при ее средней температуре:
ν=f(pпв,tв.ср)= 1,52.10-07 м2/с
λ=f(pпв,tв.ср)= 0,664Вт/(м.К)
μ=f(pпв,tв.ср)= 1,31.10-04 Па.с
Pr=f(pпв,tв.ср)= 0.886
Число Re: Re=W.dв/ν=2,37.10+05
Коэффициент теплоотдачи от стенки к воде:
α2=0,023λ.Re0,8.Pr0,4/dв= 12081,8 Вт/(м2.К)
Теплопроводность стенки трубы (Ст 20) : λст 20К= 48 Вт/(м.К)
Теплофизические константы для конденсата греющего пара
λк=f(pп,x=0)= 0,646 Вт/(м.К)
ρк=f(pп,x=0)= 837,7 кг/м3
ρп=f(pп,x=1)= 12,1 кг/м3
μк=f(pп,x=0)= 1,20.10-04 Па.с
В регенеративных подогревателях теплообмен между паром и трубами происходит при практически неподвижном паре. В этом случае главными условиями теплообмена являются скорость стекания и толщина пленки конденсата, образующегося на трубах.
Режим течения пленки определяется критерием Рейнольдса.
Здесь q = Q/F – средняя плотность теплового потока через поверхность нагрева, кВт/м2; l – высота участка труб между соседними перегородками, м; mк – коэффициент динамической вязкости пленки конденсата, Н×с/м2; r – удельная теплота конденсации пара, кДж/кг.
b=1.13εr[λк3ρк(ρк-ρп)gr/lμк]0.25
Здесь lк, rк – коэффициент теплопроводности и плотность конденсата; rп – плотность пара; er – поправка на шероховатость труб (для латунных и нержавеющих труб er = 1, для стальных цельнотянутых труб er = 0,8); Dt1 – средний перепад температур в пограничном слое со стороны греющего пара (Dt1 = tн – tсп,ср )
r=1848,7кДж/кг
εr=0.8
b=1.13εr[λк3ρк(ρк-ρп)gr/lμк]0.25=8277,62
Выражение для плотности теплового потока можно записать в виде
q = bD t10,75
Отсюда D t1 = (q/b)4/3. Значение Dtст = (dст/lст)q, а D t2 = q/a2
Получаем для общего D t = D t1 + D tст + D t2 = (q/b)4/3 + (dст/lст)q + q/a2
Δtср=(q/b)4/3+δстq/λст+q/α2
Δtср=5,97.10-06. q4/3+1,66.10-04q
При определении a1 важным значением является температура стенки поверхности нагрева. Она определяется графоаналитическим методом. Суть метода сводится к решению уравнения для плотности теплового потока через стенку трубы.С помощью выражения Δtср для ряда произвольно заданных значений q строим кривую Dt = f(q)
q
Δtср
33000
11.8
36000
13.1
39000
14.4
42000
15.7
45000
17.1
Используя эту зависимость для найденного Dtср определяем величину q
Зная q, легко определить Dt1, Dtст, Dt2 и КТО, а затем и КТП и F.
По этому графику при Δtср=13,1 °С получим q=36000 Вт/м2
Коэффициент теплопередачи:
kсп=q/Δtср= 2740,0 Вт/(м2.К)
Площадь поверхности теплообмена:
Fст=Qсп/(kсп.δtсп)= 3552,9 м2
Расчет охладителя дренажа:
Тепловая нагрузка охладителя дренажа:
Qод=Gод.(hвых.одпв-hвхпв)= 3227,6 кВт
Число спиралей собственно подогревателя:
N=Gпв/(ρ-Fтр.W)= 2774,1 шт
Принимаем число спиралей кратное произведению числа секций и числа рядов в каждой секции. N= 2774 шт (при 12 рядах в секции из однорядной спирали)
Расчетная длинна трубок:
L=Fст/(N.π.dн)= 12,74 м
Сечение для прохода пара:
F=L.l.β= 0,050 м2
где β=0.98 - учитывает часть длины труб, участвующих в теплообмене.
Средняя температура конденсата:
tk.ср=0.5(tп+tдр)= 219,4°С
Скорость конденсата в межтрубном пространстве:
Wк=Dп*v/F= 3,28 м/с
где v=0.001194 м3/кг
Эквивалентный диаметр:
dэ=4F/U= 0,10м
где U=2
Параметры конденсата при средней температуре
ν=f(pпв,tк.ср)= 1,46.10-07 м2/с
λ=f(pпв,tк.ср)= 0,654 Вт/(м.К)
μ=f(pпв,tк.ср)= 1,23.10-04 Па.с
Pr=f(pпв,tк.ср)= 0,860
Re=W.dэ/ν=2,25.10+06
Коэффициент теплоотдачи от конденсата к стенке:
α1=0,023λ.Re0.8.Pr0.4/dэ= 17102,7 Вт/(м2.К)
Средняя температура питательной воды в ОД:
tв.ср=0.5(tвых.одпв+tвхпв)= 199,0 °С
Параметры ПВ при температуре tв.ср
ν=f(pпв,tв.ср)= 1,57.10-07м2/с
λ=f(pпв,tв.ср)= 0,670Вт/(м.К)
μ=f(pпв,tв.ср)= 1,37.10-04Па.с
Pr=f(pпв,tв.ср)= 0,909
Re=W.dв/ν=2,29.10+05
α2=0,023λ.Re0,8.Pr0,4/dв=11999,4 Вт/(м2.К)
kод=(1/α1+δ/λ+1/α2)-1=4441,7 Вт/(м2.К)
Δtб=tдр-tвхпв=18,9 °С
Δtм=tк-tвых.одпв= 22,1 °С
Δtод=(Δtб-Δtм)/ln(Δtб/Δtм)= 20,4 °С
Fод=Qод/(kод.δtод)= 35,5 м2
Суммарная площадь:
F=Fсп+Fод= 3588,4 м2
По F=3588,4 м2 площади поверхности теплообмена, pв=81,6 кгс/см2, давлению основного конденсата и pп=24,6 кгс/см2 греющего пара, соответственно выбираем по[4] типоразмер ПНД 7:
2 подогревателя ПВ-2500-97-28А.
Расход греющего пара Dп4= 84,80 кг/с
давление греющего пара pп4= 0,587 МПа
расход основного конденсата Gок= 1363,7 кг/с
температура основного конденсата на входе tвхок= 124 ⁰С
температура основного конденсата на выходе tвыхок= 154 ⁰С
давление основного конденсата pок= 0.889 МПа
диаметр и толщина стенок трубок dв* δ=16*1 мм
наружный диаметр трубок dн= 18 мм
материал трубок – легированная сталь (08Х18Н10Т);
Потери теплоты в окружающую среду оцениваются коэффициентом ηтп= 0.99
число ходов ОК в ПНД z=2
Параметры конденсата и пара в ПНД 4:
tп=158 °С
hn=2823,2 кДж/кг
hk=666,9 кДж/кг
hвхпв=521,3 кДж/кг
hвыхпв=649,8 кДж/кг
Тепловая мощность ПНД 4:
Qп4=Gок.(hвыхок-hвхок)/η=177004,9 кВт
Δtб=tп-tc= 4 °С
Δtм=tп-tвыхпв= 34°С
Δtср=(Δtб-Δtм)/ln(Δtб/Δtм)= 14 °С
Принимаем скорость движения воды в трубках W= 1,5 м/с
Из уравнения сплошности определим количество трубок в ПНД 4:
n=Gок/(ρ-Fтр.W)= 4,522 шт
Общее число труб N в двухходовм ПНД 4:
N=n.z=9044 шт
Задаемся длиной трубок (7...11 м) в подогревателе – Lтр = 10 м. (первое приближение)
Средняя температура воды:
tок.ср=0.5(tвыхок+tвхок)= 139 °С
Средняя температура стенки трубок:
tст.ср=0.5(tк+tок.ср)= 148,5°С
Средняя температура слоя конденсата на поверхности трубок:
tпл.ср=0.5(tк+tст.ср)= 153,3°С
Коэффициент теплоотдачи от пара к стенке подсчитываем по эмпирической формуле:
α1=(5500+65tпл.ср-0,2t2пл.ср).((tк-tст.ср)Lтр)-0,25=3447,8 Вт/(м2.К)
α2=1,16(1400+18tок.ср-0,035t2ср.ср).W0,8.dв-0.2=11834,2 Вт/(м2.К)
Теплопроводность стенки из стали 08Х18Н10Т -λст= 18 Вт/(м.К)
Таблица 3.
Коэффициент, учитывающий накипь и загрязнения стенки:
Характеристика поверхности теплообмена и условия ее работы
Кз
Нормальные чистые (новые) трубки
1
Латунные трубки, работающие в условиях прямотока на чистой воде
0,85
Латунные трубки, работающие в условиях обратного водоснабжения или на химочищенной воде
0,8
Латунные трубки, работающие на грязной воде и возможном образовании минеральных и органических отложений
0,75
Стальные трубки, покрытые слоем окиси и накипи
0,7
Кз=1
k= Кз (1/α1+δ/λ+1/α2)-1=2325,1 Вт/(м2.К)
F=Q/(k.δt)= 5430,7 м2
Расчетная длина трубок:
L=F/(N.π.dн)= 10,62 м
По F=5430,7 м2 площади поверхности теплообмена, pв= 9,1 кгс/см2, pп=6,0 кгс/см2 давлению основного конденсата и греющего пара, соответственно выбираем типоразмер ПНД 4:
2 подогревателя ПН-3000-25-16-ІVА.
В заключении приведено сравнение расчетних значений с номинальными значениями по [4] в таблице 4.
Таблице 4.
сравнение расчетних значений с номинальными значениями
№
Показатель
Номинальное зн.
Расчетное зн.
Отклонение от наминального, %
Мощность, МВт
1100
1119.9
1.78
2
Началное довление, МПа
6
5.718
4.70
3
Началная температура, ºС
274.3
272.5
0.67
4
Разделительное довление, МПа
1.2
1.27
6.08
5
Давление перед ПП1, МПа
1.17
1.22
4.49
Давление перед ПП2, МПа
1.16
1.1859
2.23
7
Давление перед ЦСД, МПа
1.127
6.06
8
Температура после ПП1, ºС
210
197.4
5.98
9
Давление пара в отборах, МПа
I
2.87
2.506
12.69
II
1.822
1.810
0.65
III
1.122
1.273
13.46
IV
0,582
0,628
7,98
V
0,312
0,275
11,91
VI
0,08
0,103
28,61
VII
0,021
0,031
49,80
10
Расход пара в отборах, кг/с
92,72
61,61
33,55
76,47
62,65
18,07
50,55
63,66
25,94
44,91
84,80
88,81
76,41
65,64
14,10
56,44
70,89
25,61
49,75
59,66
19,92
11
Удельный расход тепла, МДж/(кВт.ч)
10,237
10,205
0,31
12
Типоразмер ПНД4
ПН-3000-25-16-ІVА
ПН-3000-25-16-ІVА (2шт.)
13
Типоразмер ПВД7
ПВ-2500-97-28А (2шт.)
Расчетная мощность отличается от номинальной вследствие отличия заданных расходов от номинальных. При расчете начального давления учитываются потери давления в паровпускных устройствах, которые колеблются в пределах 0,03...0,05. Выбор разных значений этих потерь, вызывает отклонение начального давления от номинального значения. Следовательно, начальная температура в свою очередь откланяется. Давления перед ПП1, ПП2, ЦСД и разделительное давление зависят от давлений в отборах. Значения давлений пара в камерах отборов Т, работающей на номинальной нагрузке в проектном расчете, определяются по соответствующим температурам ОК и ПВ на выходе из ПНД и ПВД. Для расчета тепловой схемы ТУ использовали параметры (давление, температуру и энтальпию) греющего пара отборов непосредственно на входе в регенеративные подогреватели, дренажей конденсата греющего пара, нагреваемой среды (основного конденсата, питательной воды и перегреваемого пара в СПП). Расчет этих параметров выполнялся с заданными исходными данными и по рекомендациям, поэтому значения давлений пара в камерах отборов отличаются от номинальных значений. Это объясняет отличие между расчетными и номинальными значениями расходов и удельного расхода тепла и КПД.
1. Маргулова Т.Х. Атомные электрические станции: Учебник для вузов.– 4-е изд., перераб. и доп.–М.: Высш.шк., 1984.–304 с.: ил.
2. Трояновский Б.М. и др. Паровые и газовые турбины атомных электростанций: Учеб. пособие для вузов.– М.: Энергоатомиздат, 1985.–256 с.: ил.
3. Тепловые и атомные электрические станции: Справочник / Под общ. ред. В.А.Григорьева, В.М.Зорина.– 2-е изд., перераб.– М.: Энергоатомиздат, 1989.– 608 с.: ил.– (Теплоэнергетика и теплотехника; Кн. 3).
4. Киров В.С. Тепловые схемы турбоустановок АЭС и их расчеты: Учебн. пособие для вузов.– изд. 2-е, испр.– Одесса: Астропринт, 2004.– 212 с.
5. Ривкин С.Л., Александров А.А. Теплофизические свойства воды и водяного пара.–М.: Энергия, 1980.– 424 с.: ил.
Страницы: 1, 2, 3, 4