Содержание
Введение
1. Исходные данные
2. Принципиальная схема котельного агрегата
3. Теплотехнический расчет котельного агрегата
3.1 Расчет процесса горения топлива в топке котла
3.2 Расчет процесса горения и ht – диаграмма продуктов сгорания топлива
3.3 Тепловой баланс котельного агрегата
3.4 Упрощенный эксергетический баланс котельного агрегата
4. Тепловой расчет котла – утилизатора
4.1 Выбор типа котла – утилизатора
4.2 Расчет поверхности теплообмена котла – утилизатора
4.3 Термодинамическая эффективность работы котла – утилизатора
4.4 Графическая зависимость по исследовательской задаче
4.5 Термодинамическая эффективность совместной работы котельного агрегата с котлом – утилизатором
5. Схема котла – утилизатора
6. Схема экономайзера
7. Схема воздухоподогревателя
8. Схема горелки
Заключение
Литература
Наука, изучающая процессы получения и использования теплоты в различных производствах, а также машин и аппаратов, предназначенных для этих целей, называется теплотехникой.
В настоящее время роль теплотехники значительно возросла в связи с необходимостью экономного использования топливно – энергетических ресурсов, решения проблем охраны окружающей среды и создания безотходных технологий.
Принятый Федеральный закон “Об энергосбережении” (№ 28 – ФЗ от 03.04.1996 г.) предусматривает комплекс мер, в том числе по подготовке кадров, направленных на координальное изменение ситуации в области энергоиспользования. В реализации этого закона большая роль отводится специалистам любого технического профиля, чем и объясняется особая актуальность теплотехнической подготовки соответствующих инженерных кадров, в том числе и технологических специальностей.
Оценка потенциала энергосбережения свидетельствует о возможностях российской экономики к 2010 г. сократить потребность в энергоресурсах в результате роста эффективности их использования в размере 350…360 млн.т условного топлива при ожидаемом энергопотреблении на уровне 1050 млн. т у.т..
Нефтеперерабатывающая, нефтехимическая и химическая промышленности являются наиболее энергоемкими отраслями народного хозяйства. В себестоимости производства отдельных видов продукции в этих отраслях промышленности на долю энергетических затрат приходится от 10 до 60 %, например, на переработку 1 т нефти затрачивается 165 – 180 кг условного топлива.
Энергетическое хозяйство НПЗ и НХЗ включает собственно энергетические установки (ТЭЦ, котельные, компрессорные, утилизационные, холодильные, теплонасосные установки и др.), энергетические элементы комбинированных энерго-, химико-технологических систем (ЭХТС), производящих технологическую и энергетическую продукцию.
В данной работе на примере котельного агрегата рассматриваются методы расчета процесса сжигания и расхода топлива, КПД, теплового и эксергетического балансов. Экономия топлива при его сжигании является одной из важнейших задач в решении топливно-энергетической проблемы.
Вопросы экономии топлива и рационального использования теплоты решаются в курсовой работе применением в схеме установки экономайзера, воздухоподогревателя, котла – утилизатора.
28
14 МПа
550 °С
100°С
175 °С
1,20
21 т/ч
Δα=0,25
СО 0,10
CH4 98,00
C2H6 0,40
С3Н8 0,20
N2 1,30
Исследовательская задача
Используя аналитические выражения построить зависимость влияния температуры окружающего воздуха t0 (t0=0…250 °С с шагом 50 °С) на КПД брутто котельного агрегата.
2. Принципиальная схема котельного агрегата [1]
Рисунок 1 – Принципиальная схема котельного агрегата
В котельном агрегате вода подается питательным насосом 1 в подогреватель ( водяной экономайзер) 2, где за счет теплоты дымовых газов (показаны пунктиром) подогревается до температуры кипения . Из экономайзера вода попадает через барабан 5 и опускные трубы 4 в систему испарительных трубок 3, которые расположены в топке котла. В испарительных трубках в результате подвода теплоты от продуктов горения часть воды превращается в пар. Образовавшаяся пароводяная эмульсия возвращается в барабан 5, где разделяется на сухой насыщенный пар и воду, которая опять возвращается в испарительный контур. Полученный таким образом сухой насыщенный пар из верхней части барабана поступает в пароперегреватель 6, где за счет теплоты горячих дымовых газов перегревается до требуемой температуры перегретого пара .
Таким образом, процесс получения перегретого пара состоит из трех п последовательных стадий: подогрев воды до температуры кипения, парообразования и е перегрева пара до требуемой температуры. Все эти стадии протекают при постоянном давлении.
3. Теплотехнические расчеты котельного агрегата
Коэффициент избытка воздуха за установкой
,
Теоретическое количество воздуха, необходимого для полного сгорания газообразного топлива
м3/м3.
Объем трехатомных газов
Теоретический объем азота
Объем избытка воздуха в топочном пространстве
Объем водяных паров
Объемное количество продуктов сгорания, образующихся при сжигании топлива
. м3/м3.
Плотность топливного газа при нормальных условиях
кг/м3.
Массовое количество дымовых газов, образующихся при сжигании газообразного топлива
Определим калориметрическую температуру горения, для чего вычислим энтальпию продуктов сгорания при температуре 1400 и 2000 °С
кДж/кг,
кДж/кг.
где , , , - Средние объемные изобарные теплоемкости углекислого газа, азота, водяных паров и воздуха;
Энтальпию продуктов сгорания при калориметрической температуре определяем из уравнения теплового баланса топки, для двух случаев
а. с воздухоподогревателем
кДж/м3.
где - физическое тепло топлива, ввиду его малости можно принять ;
- физическое тепло воздуха;
где - температура воздуха;
- средняя изобарная объемная теплоемкость воздуха при;
б. без воздухоподогревателя
кДж/м3
Зная и по ht – диаграмме определяем калориметрические температуры горения и
Построили диаграмму - продуктов сгорания и определили и , которые равны °С и °С.
Определяем энтальпию уходящих газов
Для этого случая определяем приближенное значение температуры уходящих газов без воздухоподогревателя из уравнения теплового баланса последнего
где 1,295 и 1,293 – плотности дымовых газов и воздуха при нормальных условиях;
- средняя изобарная массовая теплоемкость газов,
принимаем ;
- средняя изобарная массовая теплоемкость воздуха,
отсюда
°С.
3.2 Расчет процесса горения и - диаграмма продуктов сгорания топлива
Исходные данные содержание компонентов смеси
CH4
C2H6
C3H8
C4H10
98.000
0,400
0.200
0.000
C5H12
H2S
H2
H2O
O2
CO
CO2
N2
0.100
1.300
Q – НИЗШАЯ ТЕПЛОТВОРНАЯ СПОСОБНОСТЬ, кДж/м3 Q = 36700.000
Определяем энтальпию продуктов сгорания
Т/А
1.0
1.2
1.4
1.6
1.8
0.0
0,000
100.0
1462,075
1712,302
1962,529
2212,756
2462,984
200.0
2943,884
3446,974
3950,063
4453,152
4956,242
300.0
4482,032
5242,573
6003,114
6763,654
7524,195
400.0
6042,497
7065,550
8088,603
9111,656
10134,709
500.0
7662,754
8955,125
10247,495
11539,866
12832,237
600.0
9316,992
10883,935
12450,878
14017,821
15584,763
700.0
11012,272
12859,842
14707,412
16554,982
18402,552
1400.0
23754,819
27674,749
31594,680
35514,610
39434,541
1500.0
25666,249
29893,366
34120,483
38347,600
42574,717
1600.0
27594,377
32131,034
36667,691
41204,348
45741,005
1700.0
29542,715
34389,814
39236,913
44084,013
48931,112
1800.0
31495,488
36655,757
41816,026
46976,294
52136,563
1900.0
33466,855
38904,961
44343,066
49781,172
55219,277
2000.0
35445,070
41235,243
47025,416
52815,590
58605,763
2100.0
37439,057
43544,581
49650,105
55755,629
61861,153
2200.0
39439,580
45863,258
52286,936
58710,615
65134,293
2300.0
41440,367
48182,919
54925,472
61668,024
68410,576
2400.0
43456,609
50520,344
57584,079
64647,814
71711,550
2500.0
45472,713
52855,617
60238,522
67621,427
75004,332
2.0
3.0
3.5
4.0
4.5
2713,211
3964,347
4589,915
5215,483
5841,051
5459,331
7974,778
9232,501
10490,225
11747,948
8284,736
12087,439
13988,791
15890,143
17791,495
11157,762
16273,028
18830,661
21388,294
23945,927
14124,607
20586,460
23817,387
27048,313
30279,240
17151,706
24986,421
28903,778
32821,135
36738,493
20250,122
29487,972
34106,897
38725,822
43344,747
43354,471
62954,123
72753,949
82553,775
92353,601
46801,834
67937,418
78505,211
89073,003
99640,796
50277,662
72960,947
84302,589
95644,232
106985,875
53778,212
78013,709
90131,457
102249,206
114366,954
57296,832
83098,175
95998,847
108899,518
121800,190
60657,383
87847,911
101443,175
115038,439
128633,703
64395,936
93346,802
107822,235
122297,667
136773,100
67966,677
98494,296
113758,106
129021,916
144285,726
71557,972
103676,363
119735,559
135794,755
151853,951
75153,128
108865,890
125722,270
142578,651
159435,031
78775,285
114093,961
131753,299
149412,637
167071,975
82387,237
119301,761
137759,023
156216,285
174673,547
Страницы: 1, 2, 3