Рефераты. Термодинамика






   Общая теория процессов самоорганизации открытых сильно не равновесных системах развивается на основе универсального критерия эволюции Пригожина - Гленсдорфа . Этот критерий является обобщением теоремы Пригожина о минимальном производстве энтропии . Скорость производства энтропии , обусловленная изменением термодинамических сил  Х , согласно этому критерию подчиняется условию


                                   dx P / t  £  0              (2.6)


   Это неравенство не зависит не от каких предположений о характере связей между потоками и силами в условиях локального равновесия и носит по этому универсальный характер . В линейной области неравенство (2.6. ) переходит в теорему Пригожина о минимальном производстве энтропии . Итак , в неравновестной системе процессы идут так , т.е. система эволюционирует таким образом, что скорость производства энтропии при изменении термодинамических сил уменьшается ( или равна нулю в стационарном состоянии ).

   Упорядоченные структуры , которые рождаются вдали от равновесия , в соответствии с критерием  (2.6.) и есть диссипативные структуры .

   Эволюция бифуркации и последующей самоорганизации обусловлено , таким образом , соответствующими не равновесными ограничениями .

   Эволюция переменных  Х будет описываться системой уравнений  

                                     (2.7)


где функции  F как угодно сложным образом могут зависить от самих переменных  Х и их пространственных производных координат r и времени t . Кроме того , эти функции буду зависить от управляющих параметров , т.е. тех изменяющихся характеристик , которые могут сильно изменить систему . На первый взгляд кажется очевидным , что структура функции { F } будет сильно определятся типом соответствующей рассматриваемой системы . Однако , можно выделить некоторые основные универсальные черты , независящие от типа систем.

   Решение уравнения (2.7) , если нет внешних ограничений , должны соответствовать равновесию при любом виде функции F . Поскольку равновесное состояние стационарно , то

Fi ({Xрав},lрав  ) = 0               (2.8)

   В более общем случае для неравновесного состояния можно аналогично написать условие

Fi ({X},l) = 0                   (2.9)

   Эти условия налагают определенные ограничения универсального характера , например, законы эволюции системы должны быть такими , чтобы выполнялось требование положительности температуры или химической концентрации, получаемых как решения соответствующих уравнений.

   Другой универсальной чертой является нелинейным . Пусть , например некоторая единственная характеристика системы

удовлетворяет уравнению

                                            (2.10)

где  k - некоторый параметр , l - внешние управляющие ограничения . Тогда стационарное состояние определяется из следующего алгебраического уравнения

                                    l - kX = 0              (2.11)

откуда

                                    Xs = l / k                (2.12)

   В стационарном состоянии , таким образом , значении характеристики , например , концентрации , линейно изменяется в зависимости от значений управляющего ограничения l , и имеется для каждого l единственное состояние  Хs . Совершенно однозначно можно предсказать стационарное значение  Х при любом l ,если иметь хотя бы два экспериментальных значения  Х

(l ) .Управляющий параметр может , в частности , соответствовать степени удаленности системы от равновесия . Поведение в этом случае системы очень похожи на равновесии даже при наличии сильно неравновесных ограничений .

 

Рис. 2.6. Иллюстрация универсальной черты нелинейности в самоорганизации структур .

   Если же стационарное значение характеристики  Х не линейно зависит от управляющего ограничения при некоторых значениях , то при одном и том же значении имеется несколько различных решений . Например , при ограничениях система имеет три стационарных решения , рисунок 2.6.в. Такое универсальное отличие от линейного поведения наступает при достижении управляющим параметром некоторого критического значения  l - проявляется бифуркация. При этом в нелинейной области небольшое увеличение может привести к неодекватно сильному эффекту - система может совершить скачок на устойчивую ветвь при небольшом изменении вблизи критического значения  l , рисунок 2.6.в. Кроме того из состояний на ветви  А1В могут происходить переходы  АВ1 ( или наоборот ) даже раньше , чем будут достигнуты состояния  В или А , если возмущения накладываемые на стационарное состояние , больше значение , соответствующего промежуточной ветви  А В . Возмущениями могут служить либо внешнее воздействие либо внутренние флуктуации в самой системе . Таким образом , системе с множественными стационарными состояниями присуще универсально свойствам внутренне возбудимость и изменчивости скачкам .

   Выполнение теоремы по минимально производстве энтропии в линейной области , а, как обобщение этой теоремы , выполнение универсального критерия (2.6.) и в линейной , и в нелинейной области гарантируют устойчивость стационарных неравновесных состояний. В области линейности необратимых процессов производство энтропии играет такую же роль , как термодинамические потенциалы в равновесной термодинамике . В нелинейной области величина  dP / dt  не имеет какого либо общего свойства , однако , величина  dx P/dt  удовлетворяет неравенству общего характера (2.6. ) , которая является обобщением теоремы о минимальном производстве энтропии .






2.3 ПРИМЕРЫ САМООРГАНИЗАЦИИ РАЗЛИЧНЫХ

      СИСТЕМ.

    Рассмотрим в качестве иллюстрации некоторые примеры самоорганизации систем в физике , химии , биологии и социуме.


2.3.1. ФИЗИЧЕСКИЕ  СИСТЕМЫ.

   В принципе даже в термодинамическом равновесии можно указать примеры самоорганизации , как результаты коллективного поведения . Это , например , все фазовые переходы в физических системах , такие как переход жидкость - газ , ферромагнитный переход или возникновение сверхпроводимости . В неравновесном состоянии можно назвать примеры высокой организации в гидродинамике , в лазерах различных типов , в физике твердого тела - осциллятор Ганна , туннельные диоды , рост кристаллов .

   В открытых системах , меняя поток вещества и энергии из вне , можно контролировать процессы и направлять эволюцию систем к состояниям , все более далеким от равновесия . В ходе неравновесных процессов при некотором критическом значении внешнего потока из неупорядоченных и хаотических состояний за счет потери их устойчивости могут возникать упорядоченные состояния , создаваться диссипативные структуры .


           2.3.1а.  ЯЧЕЙКИ  БЕНАРА.

   Классическим примером возникновения структуры из полностью хаотической фазы являются конвективные ячейки Бенара . В 1900 году была опубликована статья Х.Бенара с фотографией структуры , по виду напоминавшей пчелиные соты (рис. 2.7).


      Рис. 2.7.        Ячейки  Бенара :

                        а) - общий вид структуры

                        б) - отдельная ячейка.

   Эта структура образовалась в ртути , налитой в плоский широкий сосуд , подогреваемый снизу , после того как температурный градиент превысил некоторое критическое значение . Весь слой ртути (или другой вязкой жидкости) распадался на одинаковые вертикальные шестигранные призмы с определенным соотношением между стороной и высотой (ячейки Бенара). В центральной области призмы жидкость поднимается , а вблизи вертикальных граней - опускается . Возникает разность температур   Т  между нижней и верхней поверхностью   DТ = Т2 - Т1 > 0 .Для малых до критических разностей  DТ < DТkp  жидкость остается в покое , тепло снизу вверх передается путем теплопроводности . При  достижении  температуры  подогрева  критического значения Т2 = Тkp (соответственно DТ = DТkp ) начинается конвекция . При достижении критического значения параметра  Т , рождается , таким образом , пространственная диссипативная структура . При равновесии температуры равны   Т2 =Т1  ,  DТ = 0 . При кратковременном подогреве (подводе тепла) нижней плоскости , то есть при кратковременном внешнем возмущении температура быстро станет однородной и равной ее первоначальному значению . Возмущение затухает , а состояние - асимптотически устойчиво. При длительном , но до критическом подогреве ( DТ < DТkp ) в системе снова установится простое и единственное состояние , в котором происходит перенос к верхней поверхности и передачи его во внешнюю среду (теплопроводность) , рис. 2.8 , участок а . Отличие этого состояния от равновесного состояния состоит в том , что температура , плотность , давление станут неоднородными . Они будут приблизительно линейно изменяться от теплой области к холодной .

     Рис. 2.8.  Поток тепла в тонком слое жидкости.

   Увеличение разности температур  DТ , то есть дальнейшее отклонение системы от равновесия , приводит к тому , что состояние неподвижной теплопроводящей жидкости становится неустойчивым участок  б  на рисунке 2.8. Это состояние сменяется устойчивым состоянием (участок  в  на  рис. 2.8) , характеризующимся образованием ячеек . При больших разностях температур покоящаяся жидкость не обеспечивает большой перенос тепла , жидкость ²вынуждена² двигаться , причем кооперативным коллективным согласованном образом.

   Далее этот вопрос рассматривается в 3 главе.



             2.3.1в.  ЛАЗЕР , КАК САМООРГАНИЗУЮЩАЯСЯ

                          СИСТЕМА.

   Итак , в качестве примера физической системы , упорядоченность которой есть следствие внешнего воздействия , рассмотрим лазер.

   При самом грубом описании лазер - это некая стеклянная трубка , в которую поступает свет от некогерентного источника (обычной лампы) , а выходит из нее узконаправленный когерентный световой пучок , при этом выделяется некоторое количества тепла.

   При малой мощности накачки эти электромагнитные волны , которые испускает лазер , некоррелированные , и излучение подобно излучению обычной лампы. Такое некогерентное излучение - это шум , хаос. При повышении внешнего воздействия в виде накачки до порогового критического значения некогерентный шум преобразуется в  ²чистый тон² , то есть испускает число синусоидальная волна - отдельные атомы ведут себя строго коррелированным образом , самоорганизуются.

                            Лампа  ®  Лазер

                              Хаос   ®  Порядок

                              Шум   ®  Когерентное излучение

   В сверхкритической области режим ²обычной лампы² оказывается не стабильным , а лазерный режим стабильным , рисунок 2.9.


Рис. 2.9.  Излучение лазера в до критической (а) и

                         сверхкритической (б) области.

   Видно , что образование структуры в жидкости и в лазере формально описывается весьма сходным образом . Аналогия связана с наличием тех же самых типов бифуркаций в соответствующих динамических уровнях.

   Подробнее этот вопрос рассмотрим в практической части , в 3 главе.

2.3.2.  ХИМИЧЕСКИЕ  СИСТЕМЫ .

   В этой области синергетика сосредотачивает свое внимание на тех явлениях , которые сопровождаются образованием макроскопических структур . Обычно если дать реагентам про взаимодействовать, интенсивно перемешивая реакционную смесь, то конечный продукт получается однородный . Но в некоторых реакциях могут возникать временные, пространственные или смешанные ( пространственные - временные) структуры . Наиболее известным примером может служить реакция Белоусова - Жаботинского .


      2.3.2а.  РЕАКЦИЯ  БЕЛАУСОВА - ЖАБОТИНСКОГО.

    Рассмотрим реакцию Белоусова -Жаботинского . В колбу сливают в определенных пропорциях Ce2(SO4) , KBrO3 , CH2(COOH)2, H2SO4 , добавляют несколько капель индикатора окисления - восстановления - ферроина и перемешивают . Более конкретно - исследуются окислительно - восстановительные реакции

                          Ce 3+_ _ _ Ce 4+ ;  Ce 4+_ _ _ Ce 3+

в растворе сульфата церия , бромида калия , малоковой кислоты и серной кислоты . Добавление феррогена позволяет следить за ходом реакции по изменению цвета ( по спектральному поглащению ) . При высокой концентрации реагирующих веществ , превышающих критическое значение сродства , наблюдаются необычные явления .




При составе

              сульфат церия - 0,12 ммоль/л

              бромида калия - 0,60 ммоль/л

              малоковой кислоты - 48 ммоль/л

              3-нормальная серная кислота ,

               немного ферроина

При 60 С изменение концентрации ионов церия приобретает характер релаксационных колебании - цвет раствора со временем периодически изменяется от красного (при избытке Се3+ ) до синего ( при избытке Се 4+) , рисунок 2.10а .

              Рис. 2.10.  Временные (а) и пространственные (б)

                               периодические структуры в реакции

                                Белоусова - Жаботинского.

...Такая система и эффект получили название химические часы . Если на реакцию Белоусова - Жаботинского накладывать возмущение - концентрационный или температурный импульс , то есть вводя несколько миллимолей бромата калия или прикасаясь к колбе в течении нескольких секунд , то после некоторого переходного режима будут снова совершаться колебания с такой же амплитудой и периодом , что и до возмущения . Диссипативная

Белоусова - Жаботинского , таким образом , является ассимптотически устойчивой . Рождение и существование незатухающих колебаний в такой системе свидетельствует о том , что отдельные части системы действуют согласованно с поддержанием определенных соотношений между фазами . При составе

                   сульфата церия - 4,0 ммоль/л,

                   бромида калия - 0,35 ммоль/л,

                   малоковой кислоты - 1,20 моль/л,

                   серной кислоты - 1,50 моль/л,

                   немного ферроина

при 20 С в системе происходят периодические изменения цвета с периодом около 4 минут . После нескольких таких колебаний спонтанно возникают неоднородности концентрации и образуются на некоторое время ( 30 минут ) , если не подводить новые вещества , устойчивые пространственные структуры , рисунок 2.10б . Если непрерывно подводить реагенты и отводить конечные продукты , то структура сохраняется неограниченно долго .


2.3.3. БИОЛОГИЧЕСКИЕ  СИСТЕМЫ .

   Животный мир демонстрирует множество высокоупорядоченных структур и великолепно функционирующих . Организм как целое непрерывно получает потоки энергии ( солнечная энергия , например , у растений ) и веществ ( питательных ) и выделяет в окружающую среду отходы жизнедеятельности . Живой организм - это система открытая . Живые системы при этом функционируют определенно в дали от равновесия . В биологических системах , процессы самоорганизации позволяют биологическим системам ²трансформировать² энергию с молекулярного уровня на макроскопический . Такие процессы , например , проявляются в мышечном сокращении , приводящим к всевозможным движениям , в образовании заряда у электрических рыб , в распознавании образов , речи и в других процессах в живых системах. Сложнейшие биологические системы являются одним из главных объектов исследования в синергетике . Возможность полного объяснения особенностей биологических систем , например , их эволюции с помощью понятий открытых термодинамических систем и синергетики в настоящее время окончательно неясна . Однако можно указать несколько примеров явной связи между понятийным и математическим аппаратом открытых систем и биологической упорядоченностью.

   Более конкретно биологические системы мы рассмотрим в 3 главе , посмотрим динамику популяций одного вида  и систему ²жертва - хищник² .

2.3.4.  СОЦИАЛЬНЫЕ  СИСТЕМЫ .

   Социальная система  представляет собой определенное целостное образование , где основными элементами являются люди , их нормы и связи . Как целое система образует новое качество , которое не сводится к сумме качеств ее элементов . В этом наблюдается некоторая аналогия с изменением свойств при переходе от малого к    очень большому числу частиц в статической физике - переход от динамических к статическим закономерностям . При этом весьма очевидно , что всякие аналогии с физико - химическими и биологическими системами весьма условны , поэтому проводить аналогию между человеком и молекулой или даже нечто подобное было бы не допустимым заблуждением . Однако , понятийный и математический аппарат нелинейной неравновесной термодинамики и синергетики оказываются полезными в описании и анализе элементов самоорганизации в человеческом обществе.

   Социальная самоорганизация - одно из проявлений спонтанных или вынужденных процессов в обществе , направленная на упорядочение жизни социальной системы , на большее саморегулирование. Социальная система является системой открытой способная , даже вынужденная обмениватся с внешним миром информацией , веществом , энергией. Социальная самоорганизация возникает как результат целеноправленных индивидуальных действий ее составляющих.

   Рассмотрим самоорганизацию в социальной системы напримере урбанизации зоны . Проводя анализ урбанизации географических зон можно предположить , что рост локальной заселенности данной территории будет обусловлен наличием в этой зоне рабочих мест . Однако , здесь существует некоторая зависимость : состояние рынка , определяющего потребность в товарах и услугах и занятости . Отсюда возникает механизм нелинейной обратной связи в процессе роста плотности населения. Такая задача решается на основе логистического уравнения , где зона характеризуется ростом ее производительности  N , новых экономических функций  S - функция в локальной области  i  города. Логистическое уравнение описывает эволюцию численности населения и может быть тогда представлена в виде

                      dni

¾    =   Кni(N + å Rk Sik - ni) - dni         ( 2.13 )

dt                         k


где  Rk   вес данной к - ой  функции , ее значимость . Экономическая функция изменяется с ростом численности : определяется спросом на к - й  продукт в  i - й  области в зависимости от увеличения численности населения и конкуренции предприятий в других зонах города . Появление новой экономической функции играет роль социально экономической флуктуации и нарушает равномерное распределение плотности населения. Такие численные расчеты по логистическим уравнениям могут быть полезны прогнозировании многих проблем.


ПОСТАНОВКА  ЗАДАЧИ.


   В рассмотренных примерах в литературе имеются лишь общие выводы и заключения , не приведены конкретные аналитические расчеты или численные .

   Целью настоящей дипломной работы является аналитические и численные исследования самоорганизации различных систем .







ГЛАВА 3

   АНАЛИТИЧЕСКИЕ  И ЧИСЛЕННЫЕ  ИССЛЕДОВАНИЯ 

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.