Рефераты. Электрические аппараты






Особенности условий работы пускателя состоят в следующем. При включении асинхронного двигателя пусковой ток достигает 6-7-кратного значения номинального тока. Даже незначительная вибрация контактов при таком токе быстро выводит их из строя. Это накладывает высокие требования в отношении вибрации контактов и их износа. С целью уменьшения времени вибрации контакты и подвижные части делаются возможно легче, уменьшается их скорость, увеличивается нажатие. Эти мероприятия позволили создать износоустойчивый пускатель типа ПА с электрической износоустойчивостью до 106 операций.

Исследования показали, что при токах до 100 А целесообразно применять серебряные накладки на контактах. При токе выше 100 А хорошие результаты дает композиция серебра и окиси кадмия типа СОК-15.

После разгона двигателя величина тока падает до номинального значения.

При отключении восстанавливающееся напряжение на контактах равно разности напряжения сети и ЭДС двигателя. В результате на контактах появляется напряжение, составляющее всего 15-20% , т.е. имеют место облегченные условия отключения. При работе двигателя нередки случаи, когда двигатель отключается от сети тотчас же после пуска. Пускателю приходится тогда отключать ток, равный семикратному номинальному току при очень низком коэффициенте мощности (cos=0,3) и восстанавливающемся напряжении, равном номинальному напряжению источника питания. После 50-кратного включения и отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы. В технических данных пускателя указывается не только его номинальный ток, но и мощность двигателя, с которым пускатель может работать при различных напряжениях. Поскольку ток, отключаемый пускателем, относительно мало падает с ростом напряжения, мощность двигателя, с которым может работать данный пускатель, возрастает с увеличением номинального напряжения. Наибольшее рабочее напряжение равно 500 В.

Многочисленные исследования показали, что электрическая износоустойчивость примерно обратно пропорциональна мощности управляемого электродвигателя в степени 1,5-2. Если необходимо повысить срок службы пускателя, то целесообразно выбрать его с запасом по мощности.

При уменьшении мощности двигателя возрастает допустимое число включений в час. Дело в том, что двигатель меньшей мощности быстрее достигает номинальной скорости вращения. Поэтому при отключении пускатель разрывает установившийся номинальный ток двигателя, что облегчает работу пускателя.

С учетом исключительно широкого распространения пускателей большое значение приобретает снижение мощности, потребляемой ими. В пускателе мощность расходуется в электромагните и тепловом реле. Потери в электромагните составляют примерно 60%, в тепловых реле – 40%. С целью снижения потерь в электромагните применяется холоднокатаная сталь Э-310.


Конструкция и схема включения пускателя


Наибольшее распространение получили пускатели серии ПМЕ и ПА. С учетом условий работы пускателя оказалось возможным, используя двукратный разрыв цепи, отказаться от применения громоздких дугогасительных устройств в виде решетки или камеры магнитного дутья. Широко применяются торцевые контакты с металлокерамикой. Подвижный контакт выполняется мостикового типа с самоустанавливанием. Прямоходовой электромагнит имеет Ш-образный сердечник и якорь. Короткозамкнутый виток расположен на двух крайних стержнях сердечника.

При токах, больших 25 А, хорошо себя зарекомендовала система пускателей серии ПА, в которой ход контакта примерно в 2,5 раза меньше, чем ход якоря электромагнита. Для защиты двигателя от перегрузки в двух фазах устанавливаются тепловые реле. В некоторых типах пускателей, например, в серии П, тепловые реле расположены на одной панели с контактором. В этих случаях обычно используются реле типа РТ тепловых реле.

Более совершенную тепловую защиту дают реле типа ТРП и ТРИ, которые монтируются вне контактора пускателя. Схема включения нереверсивного пускателя показана на рис. 4.1. Главные (линейные) контакты КМ1, КМ2, КМ3 включаются в рассечку проводов, питающих двигатель. В проводах двух фаз включаются также нагревательные элементы тепловых реле ТРП-1 и ТРП-2. Катушка электромагнита К подключается к сети через размыкающие контакты тепловых реле и кнопки управления. При нажатии кнопки «Пуск» напряжение на катушку подается через замкнутые контакты кнопки «Стоп» и замкнутые контакты кнопки «Пуск». После притяжения якоря электромагнита замыкается блок-контакт КМ, шунтирующий кнопку «Пуск». Это дает возможность отпустить пусковую кнопку.

Для отключения пускателя нажимается кнопка «Стоп». При перегрузке двигателя срабатывают тепловые реле, которые разрывают цепь катушки К. Якорь электромагнита отпадает. Происходит отключение пускателя. Высокий коэффициент возврата электромагнитного механизма переменного тока позволяет осуществить защиту двигателя от понижения напряжения питания (электромагнит отпускает якорь при напряжении 60-70% ).

Если напряжение сети возрастет до своего номинального значения, то самопроизвольного включения пускателя не произойдет, так как при отключении блок-контакт КМ размыкается и цепь катушки К разрывается.

 








Рис. 4.1. Схема включения магнитного пускателя

 

Схема включения реверсивного пускателя приведена на рис. 4.3. Кнопка управления «Вперед» имеет замыкающие контакты 1-2 и размыкающие контакты 4-6. Аналогичные контакты имеет кнопка пуска двигателя в обратном направлении («Назад»).


Рис. 4.3. Схема включения реверсивного пускателя


Соответственно, индекс В отнесен к элементам, участвующим при работе «Вперед», и индекс Н – при работе «Назад». При пуске «Вперед» замыкаются контакты 1-2 этой кнопки и процесс протекает так же, как и у нереверсивного пускателя, с той лишь разницей, что цепь катушки Кв замыкается через размыкающие контакты 1-6 кнопки «Назад».

Одновременно размыкаются размыкающие контакты 4-6 кнопки «Вперед», при этом разрывается цепь катушки КВ. При нажатии кнопки «Назад» вначале размыкаются контакты 1-6, обесточивается катушка КВ и отключается пускатель «Вперед». Затем контактами 4-3 запускается электромагнит пускателя «Назад». При одновременном нажатии кнопок «Вперед» и «Назад» ни один из пускателей не будет включен. Блок-контакты в настоящее время выпускаются в виде унифицированных блоков, которые могут устанавливаться в различных пускателях.

Современные контакторы, выпускаемые отечественной промышленностью


Контакторы относятся к аппаратам управления низкого напряжения (до 1000 В). Контактором называется электрический аппарат с самовозвратом для многократного дистанционного включения и отключения силовой электрической нагрузки переменного и постоянного токов, а также редких отключений токов перегрузки. Ток перегрузки составляет 7-10-кратное значение по отношению к номинальному току.

Контакторы переменного и постоянного тока, как правило, имеют конструктивные отличия, поэтому обычно не взаимозаменяемы.

В контакторах не предусмотрены защиты, присущие автоматам и магнитным пускателям. Контакторы обеспечивают большое число включений и отключений (циклов) при дистанционном управлении ими. Число этих циклов для контакторов разной категории изменяется от 30 до 3600 в час. Контакторы выпускаются переменного (типа К и КТ) и постоянного (типа КП, КМ, КПД) токов.

.

Современные магнитные пускатели, выпускаемые отечественной промышленностью


Устройство и назначение

Магнитные пускатели предназначены для пуска, остановки, реверсирования и тепловой защиты главным образом асинхронных двигателей. Наибольшее применение находят магнитные пускатели с контактными системами и электромагнитным приводом типов ПМЕ, ПМА, ПА (ПАЕ). Пускатели выполняются открытого, защищенного, пылебрызгонепроницаемого исполнения, реверсивные и нереверсивные, с тепловой защитой и без нее. Магнитный пускатель заключается, как правило, в стальной кожух. Управление им осуществляется посредством кнопок управления Пуск, Стоп, Вперед, Назад

Технические параметры

Пускатели серии ПМЕ, ПАЕ обладают коммутационной способностью до  операций и частотой включений до 1200 в час. Выбор контакторов и пускателей осуществляется по номинальному напряжению сети, номинальному напряжению питания катушек контакторов и пускателей, по номинальному коммутируемому току электроприемника.

Наиболее распространенные серии пускателей с контактной системой и электромагнитным приводом: ПМЕ, ПМА, ПА, ПВН, ПМЛ, ПВ, ПАЕ.

Пускатели серии ПМА предназначены для управления асинхронными двигателями в диапазоне мощностей от 1,1 до 75 кВт на напряжение 380-660 В.

Пускатели серии ПМЕ выполняются с прямоходовой магнитной системой и управлением на переменном токе. Напряжение от 36 до 500 В. Используются для управления электродвигателями с короткозамкнутым ротором.

Пускатели серии ПАЕ с управлением на переменном токе: отдельные исполнения ПАЕ-313, -314, -411, -412 применяются преимущественно в станкостроении. Характеристики пускателей серии ПМЕ и ПАЕ приведены в табл. 6.2.

Пускатели серии ПМА предназначаются для управления асинхронными двигателями мощностью 1,1...75 кВт; имеют реверсивные и нереверсивные исполнения, бывают с тепловым реле и без него, открытого и защищенного исполнения; износостойкость механическая в аппаратах на ток до 63 А составляет 16...106, выше 63 А – 10 циклов; коммутационная – соответственно 3...10 и 2,5... 10 циклов.

Номинальный ток контактов вспомогательной цепи лежит в пределах от 4 до 10 А.

Пускатели электромагнитные серии ПМЛ предназначены для дистанционного пуска непосредственным подключением к сети, остановки и реверсирования трехфазных асинхронных электродвигателей с короткозамкнутым ротором при напряжении до 660 В переменного тока частотой 50 Гц, а в исполнении с трехполюсными тепловыми реле серии РТЛ – для защиты управляемых электродвигателей от перегрузок недопустимой продолжительности и от токов, возникающих при обрыве одной из фаз.

Пускатели могут комплектоваться ограничителями перенапряжений типа ОПН. Пускатели, комплектуемые ограничителями перенапряжения, пригодны для работы в системах управления с применением микропроцессорной техники при шунтировании включающей катушки помехоподавляющим устройством или при тиристорном управлении.

Номинальное переменное напряжение включающих катушек: 24, 36, 40, 48, 110, 127, 220, 230, 240, 380, 400, 415, 500, 660 В частоты 50 Гц и 110, 220, 380, 400, 415, 440 В частоты 60 Гц.

 Пускатели ПМЛ на токи 10...63 А имеют прямоходовую магнитную систему Ш-образного типа. Контактная система расположена перед магнитной. Подвижная часть электромагнита составляет одно целое с траверсой, в которой предусмотрены подвижные контакты и их пружины.

Тепловые реле серии РТЛ подсоединяются непосредственно к корпусам пускателей.

Обозначение магнитных пускателей ПМЛ-ХХХХХХХХХ:

ПМЛ — серия;

X – величина пускателя по номинальному току (1 – 10 А, 2 – 25 А, 3 – 40 А, 4 – 63 А);

X – исполнение пускателей по назначению и наличию теплового реле (1 – нереверсивный, без теплового реле; 2    – нереверсивный, с тепловым реле; 5 – реверсивный пускатель без теплового реле с механической блокировкой для степени защиты IP00 и IP20 и с электрической и механической блокировками для степени защиты IP40 и IP54; 6 – реверсивный пускатель с тепловым реле с электрической и механической блокировками; 7 – пускатель звезда-треугольник степени защиты 54);

X – исполнение пускателей по степени защиты и наличию кнопок управления и сигнальной лампы (0 – IP00; 1 – IP54 без кнопок; 2 – IP54 с кнопками «Пуск» и «Стоп»; 3         – IP54 с кнопками «Пуск», «Стоп» и сигнальной лампой (изготавливается только на напряжения 127, 220 и 380 В, 50 Гц); 4 – IP40 без кнопок; 5 – IP40 с кнопками «Пуск» и «Стоп»; 6 – IP20);

X – число и вид контактов вспомогательной цепи (0 – 1з (на ток 10 и 25 А), 1з + 1р (на ток 40 и 63 А), переменный ток; 1 – 1р (на ток 10 и 25 А), переменный ток; 2 – 1з (на ток 10, 25, 40 и 63 А), переменный ток; 5 – 1з (на 10 и 25 А), постоянный ток; 6 – 1р (на ток 10 и 25 А), постоянный ток); X – сейсмостойкое исполнение пускателей (С);

X – исполнение пускателей с креплением на стандартные рейки Р2-1 и Р2-3;

XX – климатическое исполнение (О) и категория размещения (2, 4);

X – исполнение по коммутационной износостойкости (А, Б, В).

Пускатели на токи 10, 25, 40 и 63 А допускают установку одной дополнительной контактной приставки ПКЛ или пневмоприставки ПВЛ.

Номинальный ток контактов приставок ПВЛ и сигнальных контактов пускателей – 10 А.

Номинальный ток контактов приставок ПКЛ – 16 А. Приставки ПВЛ имеют 1 замыкающий и 1 размыкающий контакты.

Лекция №13


Тема лекции:

Автоматические воздушные выключатели (автоматы), виды, параметры. Электромагнитные реле (тока и напряжения, для энергосистем и электроприводов)


Автоматические воздушные выключатели

Автоматические выключатели (автоматы) обеспечивают одновременно функции коммутации силовых цепей (токи от единиц ампер до десятков килоампер) и защиты электроприемника, а также сетей от перегрузок и коротких замыканий. По выполняемым функциям защиты автоматы можно подразделять на:

1.Автоматы максимального тока;

2.Автоматыминимального тока;

3.Автоматы понижения напряжения;

4.Автоматыобратной мощности.

Принципиальные схемы действия автоматов без выдержки времени представлены на рис.13.1 (с электромагнитными расцепителями).

Основными элементами всякого автомата являются:

чувствительный орган в виде элемента защиты;

исполнительный орган в виде контактного устройства;

промежуточное кинематическое устройство- механизм выключателя;

дугогасительное устройство;

механизм управления- привод включения.

Элемент защиты воспринимает изменение параметров электрической цепи и срабатывает при наступлении ненормального режима в ней (недопустимое увеличение тока, понижения напряжения и др.) При срабатывании элементов защиты происходит воздействие на механизм свободного расцепления. Элементы защиты с промежуточными конструктивными частями (пружинами и др.) воздействующие на механизм свободного расцепления, называют расцеплениями.

Составной частью кинематики многих конструкций автоматов является механизм свободного расцепления. В различных конструкциях автоматов свободное расцепление обеспечивается по разному: механизмом с ломающимся рычагом, механизмы с защелкой и др.

На рис.13.2 показана схема механизма свободного расцепления, выполненного в виде системы шарнирно связанных ломающихся рычагов. Эти рычаги устроены так, что при включенном состоянии автомата (положение1) «б» лежит несколько ниже мертвого положения рычагов(ниже прямой, соединяющей шарниры «а»и «в» причем рычаги опуститься ниже не могут. Следовательно. при включении и выключении автомата система рычагов 6 является жесткой. Если под воздействием толкателя сердечника 5 включающий катушки 4 звенья рычага 6 будут повернуты так, что шарнир «б» окажется выше прямой, соединяющей шарниры «а» и «в», то контакты 2 и 3 автоматически разойдутся вне зависимости от положения рукоятки 1,даже если ее удерживать (положение II). Чтобы вновь включить автомат, необходимо рукоятку поставить в положение, соответствующее отключенному автомату (положение III), при котором центр «б» окажется ниже прямой «а» и «в» (говорят–«зарядить» автомат).

Механизм свободного расцепления чаще всего выполняется так, что при ручном отключении происходит излом системы рычагов, а контакты быстро расходятся под действием отключающих пружин.

13 14

 
Существует большое разнообразие конструкций автоматов на различные номинальные токи, предназначенные для работы в цепях переменного и постоянного тока.

Автоматы защиты от перегрузок и коротких замыканий обеспечивают удобную установку и монтаж как на панелях и щитах распредустройств, так и отдельных устройствах. Таки автоматы на токи до 100-600А называют установочными.

Автоматы на номинальные токи 200-1500-6000А обладают способностью отключать токи короткого замыкания на десятки килоампер, имеют обычно несколько защит (от перегрузок, коротких замыканий, снижения напряжения и др.), дистанционное управлние, сигнализацию. Поэтому конструкции их значительно сложнее. Такие автоматы называют универсальными.

Наибольшее распространение получили автоматы серий А-3000;АЕ-1000, АЕ-2000, «Электрон». Серия АЕ для защиты цепей электроприемников от перегрузок и коротких замыканий на напряжения переменного тока 380,660В; постоянного – 110-220В; на номинальные токи от16 до 100А

Серия А-3000 выполняется на напряжении: переменные 380,660В; постоянные до 440В и токи от50 до 630А. Серия имеет модификации по повышению частоты на 400и 1500Гц.

Серия «Электрон» используется в распредустройствах на напряжения до 440 В постоянного и 660В переменного и токи от 630Адо 4000А

Автоматы выбирают по их номинальному току. Уставки токов расцепителей определяют по следующим соотношениям:

Для силовых одиночных электроприемников: ток уставки теплового расцепителя Iг>1,25 Iн; ток уставки электродинамического расцепителя Iэ>1,2 Iпуск, где Iн-номинальный ток электроприемника, Iг-пусковой ток электродвигателя.

Для группы силовых (двигательных) электроприемников:

Iт>1,1Imax, Iэ>1,2(Iпуск+Imax),где Imax-наибольший суммарный ток группы электроприемников в номинальном режиме.

Лабораторная работа по исследованию автоматических воздушных выключателей направлена на изучение характеристик элементов защиты.

 










Рис.13.1.Принципиальные схемы автоматических воздушных выключателей

а–автомат максимального тока; б — автомат максимального тока с выдержкой времени; в — автомат минимального тока;

г — автомат понижения напряжения;д — автомат обратной мощности.


 








Рис.13.2. Принципиальная схема механизма свободного расцепления автомата. / — автомат включен; //-после автоматического отключения автомата; ///—автомат подготовлен к включению


Автоматическое отключение автоматов происходит под действием встроенных в них тепловых и максимально-токовых элементов защиты. Первые выполняются при помощи биметаллических элементов, срабатывающих обратнозависимой от тока выдержкой времени при появлении в цепи перегрузок; вторые при помощи электромагнитов, срабатывающих мгновенно при коротком замыкании.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.