Департамент образования
Актюбинской области
Актюбинский политехнический колледж
Курсовой проект
Тема: Электроснабжение ктп 17 жгпз
Выполнил:
Дубок Игорь Викторович
Руководитель:
Шкилёв Александр Петрович
АКТОБЕ 2007Г.
Содержание
1. Введение
2. Основные исходные данные
3. Расчет нагрузок и выбор трансформатора для питания нагрузки без компенсации реактивной энергии
4. Выбор трансформатора для питания нагрузки после компенсации реактивной энергии
5. Расчёт сечения и выбор проводов для питания подстанции (КТП)
6. Расчёт и выбор автоматов на 0,4кВ
7. Расчёт токов короткого замыкания (т.к.з.) на шинах РП 0,4кВ. и на шинах 6кВ. Выбор разъединителей
8. Проверка выбранных элементов
9. Организация эксплуатации и безопасность работ
Заключение
Графическая часть
Список используемой литературы
нагрузка трансформатор ток замыкание
Системой электроснабжения (СЭС) называют совокупность устройств для производства, передачи и распределения электроэнергии. Системы электроснабжения промышленных предприятий создаются для обеспечения питания электроэнергией промышленных приемников, к которым относятся электродвигатели различных машин и механизмов, электрические печи, электролизные установки, аппараты и машины для электрической сварки, осветительные установки и др.
Задача электроснабжения промышленных предприятий возникла одновременно с широким внедрением электропривода в качестве движущей силы различных машин и механизмов и строительством электростанций. Передача электроэнергии на большие расстояния к центрам потребления стала осуществляться линиями электропередачи высокого напряжения.
Каждое производство существует постольку, поскольку его машины-орудия обеспечивают работу технологических механизмов, производящих промышленную продукцию. Все машины-орудия приводятся в настоящее время электродвигателями. Для их нормальной работы применяют электроэнергию как самую гибкую и удобную форму энергии, обеспечивающей работу производственных механизмов.
При этом электроэнергия должна обладать соответствующим качеством. Основными показателями качества электроэнергии являются стабильность частоты и напряжения, синусоидальность напряжения и тока и симметрия напряжения. От качества электроэнергии зависит качество выпускаемой продукции и ее количество. Изменение технологических процессов производства, связанное, как правило, с их усложнением, приводит к необходимости модернизации и реконструкции систем электроснабжения. В таких системах вместо дежурного или дежурных устанавливается ЭВМ, обеспечивающая управление системой электроснабжения. Эта ЭВМ получает информацию в виде сигналов о состоянии системы электроснабжения, работе устройств защиты и автоматики и на основе этой информации обеспечивает четкую работу технологического и электрического оборудования. При этих условиях дежурный, находящийся на пульте управления, только наблюдает за течением технологического процесса и вмешивается в этот процесс только в случае его нарушения или отказов устройств защиты, автоматики и телемеханики.
Из изложенного ясно, что современное производство предъявляет высокие требования к подготовке инженеров — специалистов в области промышленного электроснабжения; одновременно требуется значительное количество инженеров, располагающих также знаниями и в области автоматики и вычислительной техники. Переход на автоматизированные системы управления может быть успешным только при наличии средств автоматики и квалифицированных инженеров в области автоматизированного электроснабжения. Следует отметить, что на многих заводах и фабриках нашей страны имеют место еще старые системы ручного обслуживания, и эти предприятия должны реконструироваться в условиях эксплуатации. Необходимость научного подхода к управлению системами электроснабжения крупных предприятий, применения автоматизированных систем управления с использованием управляющей вычислительной техники диктуется, с одной стороны, сложностью современных систем электроснабжения, наличием разнообразных внутренних взаимодействующих связей, а также недостаточно высокими характеристиками надежности эксплуатируемых устройств автоматики; с другой стороны, возможностью отрицательного влияния крупных потребителей электроэнергии на работу энергосистемы.
Реальными предпосылками применения управляющей вычислительной техники в системах электроснабжения можно считать следующие:
1) характер производства, передачи, приема и распределения электроэнергии между потребителями является непрерывным, безынерционным, быстротекущим; объект управления - развитая сложная техническая система;
2) управляющую вычислительную технику целесообразно применять в системах с высоким уровнем автоматизации технологического процесса, со значительными информационными потоками в системах контроля и управления; системы электроснабжения крупных промышленных предприятий относятся именно к таким системам;
3) современный уровень автоматизации систем электроснабжения на предприятиях позволяет использовать имеющиеся средства локальной автоматизации в АСУ электроснабжением;
4) высокие темпы развития производства вычислительных машин, совершенствование их элементной базы приводят к снижению стоимости вычислительной техники, что позволяет расширить сферу их применения.
Важной особенностью систем электроснабжения является невозможность создания запасов основного используемого продукта — электроэнергии. Вся получаемая электроэнергия немедленно потребляется. При непредвиденных колебаниях нагрузки необходима точная и немедленная реакция системы управления, компенсирующая возникший дефицит.
Общая задача оптимизации систем промышленного электроснабжения кроме указанных выше положений включает также рациональные решения по выбору сечений проводов и жил кабелей, способов компенсации реактивной мощности, автоматизации, диспетчеризации и др.
Системный подход при решении оптимизационных задач предполагает управление качеством электроэнергии, направленное на уменьшение ее потерь в системах промышленного электроснабжения, а также на повышение производительности механизмов и качества выпускаемой продукции. Комплексное решение этой проблемы обеспечивает всемерное повышение эффективности народного хозяйства.
2. Данные основные и исходные
КТП 17 ЖГПЗ питается от системы энергоснабжения мощностью 160 МВА, линия передачи ВН 320 м.
Резервуарный парк 2 х 50000 м3
Название механизма
Количество
Р кВт
об/мин
Кс
tg φp
Тип электродвигателя
насос пожаротушения
2
200
1475
0,7
0,62
А-103-4М
1
160
2955
А-101-2М
насос подъёма нефти
3
55
1480
АИР225М4
осевые вентиляторы
8
0,18
1500
0,6
0,75
АИР56В4
электрозадвижки
22
1,1
1400
0,2
1,17
АИР80А4
Требуется рассчитать нагрузки и выбрать трансформатор питания, рассчитать компенсирующее устройство ( КУ ) реактивной мощности, сечения проводов и кабельных линий, выбрать автоматы на 0,4 кВ и выключатели на 6 кВ. Произвести расчет токов короткого замыкания на шинах РП 0,4 кВ и на шинах 6 кВ. Произвести проверку выбранных аппаратов на термическую и динамическую стойкость к токам короткого замыкания. Составить электрическую схему КТП.
3. Расчет нагрузок и выбор трансформатора для питания нагрузи без компенсации реактивной энергии
Методика расчёта
; ; ,
где: - номинальная активная нагрузка, кВт;
- расчётная активная нагрузка, кВт;
- расчётная реактивная нагрузка,квар;
- расчётная полная нагрузка, кВА;
- коэффициент реактивной мощности;
- коэффициент спроса,
;
определяются потери в трансформаторе,
Определяется расчётная мощность трансформатора с учётом потерь, но без компенсации реактивной мощности.
.
Выбираем трансформатор ТМ 630/10/0,4;
Таблица 1. Сводная ведомость нагрузок
Название Механизма
n
U
кВ
P
кВт
cosφ
tgφ
Q
квар
S
кВА
I
А
K
Насос Пожаротушения
0,38
0,85
140
86,8
164,7
397,7
1988,5
112
69,44
131,8
318,1
1590,5
Насос подъёма нефти
38,5
23,87
45,3
109,4
656,4
Осевые вентиляторы
0,8
0,108
0,081
0,135
2,66
Электро-задвижки
0,65
0,22
0,338
2,86
20
Ответ: Выбрано трансформаторы ТМ 630/10/0,4; Кз = 0,96.
Расчетную реактивную мощность КУ можно определить из соотношения
где: Q— расчетная мощность КУ, квар;
— коэффициент, учитывающий повышение cos естественным способом, принимается = 0,9;
tg, tg— коэффициенты реактивной мощности до и после компенсации.
Компенсацию реактивной мощности по опыту эксплуатации производят до получения значения cos = 0,92.;.0,95.
Задавшись cosиз этого промежутка, определяют tg.
Значения , tg выбираются по результату расчета нагрузок из "Сводной ведомости нагрузок".
Задавшись типом КУ, зная Qкр и напряжение, выбирают стандартную компенсирующую установку, близкую по мощности.
Применяются комплектные конденсаторные установки (ККУ) или конденсаторы, предназначенные для этой цели.
После выбора стандартного КУ определяется фактическое значение cos
где Q — стандартное значение мощности выбранного КУ, квар. По tg определяют cos:
Параметр
,кВт
,квар
,кВА
Всего на НН без КУ
0,742
513,2
321
605,3
Определяется расчётная мощность КУ
Принимается cosφ= 0,95, тогда tgφ= 0,329.
По таблице выбирается УК 2-0,38-50 со ступенчатым регулированием по 25 квар.
Определяется фактические значения tgφ и cosφ после компенсации реактивной мощности:
; ,
Определяются расчётная мощность трансформатора с учётом потерь:
По таблице выбираем трансформатор ТМ 630/10/0,4;
; ;
Определяется
Таблица 2. Сводная ведомость нагрузок
0,841
0,643
КУ
4*50
Всего на НН с КУ
0,955
0,309
121
527,3
Потери
10,5
52,73
53,8
Всего ВН с КУ
523,7
173,73
551,8
Ответ: Выбрано 4*УКБ-0,38-50УЗ, трансформатор ТМ 630/10/0,4; Кз = 0,84.
Проверка выбранного сечения по допускаемой величине потери напряжения.
Высшее напряжение подстанции 6кВ низшее 0,4кВ.
Рассчитать линию электропередачи (ЛЭП)- это значит определить:
- сечение провода и сформировать марку;
- потери мощности;
- потери напряжения.
,
Потери мощности в ЛЕП определяются по формулам
где Iм.р – максимальный расчётный ток в линии при нормальном режиме работы, А. Для трёх фазной сети.
∆Pлэп – потери активной мощности в ЛЭП, МВт;
∆Qлэп – потери реактивной мощности в ЛЭП, Мвар;
Sпер – полная передаваемая мощность, МВА;
Uпер – напряжение передачи, кВ;
Rлэп, Xлэп – полное активное и индуктивное сопротивление, Ом;
nлэп – число параллельных линий.
Сопротивление в ЛЭП определяются из соотношений
где r0, x0 – удельные сопротивления, Ом/км.
Значение активного сопротивления на единицу длины определяется для воздушных, кабельных и других линий при рабочей температуре
где γ – удельная проводимость, .
Так как чаще всего длительно допустимая температура проводников 65 или 70 ˚С, то без существенной ошибки принимают
γ = 50 для медных проводов,
γ = 32 для алюминиевых проводов;
F – сечение проводника (одной жилы кабеля), мм2.
Значение индуктивного сопротивления на единицу длины с достаточной точностью принимается равным
Х0 = 0,4 Ом/км для воздушных ЛЭП ВН;
Х0 = 0,08 Ом/км для кабельных ЛЭП ВН.
Потери напряжения в ЛЭП определяются из соотношения
где ∆Uлэп – потеря напряжения в одной ЛЭП, %;
Pлэп – передаваемая по линии активная мощность, МВт;
Lлэп – протяженность ЛЭП, км;
r0, x0 – активное и индуктивное сопротивления на единицу длины ЛЭП;
Страницы: 1, 2