В систему распределения завода входят распределительные устройства низшего напряжения ППЭ, комплектные трансформаторные (цеховые) подстанции (КТП), распределительные пункты (РП) напряжением 6 кВ и линии электропередач (кабели, токопроводы), связывающие их с ППЭ.
Выбор системы распределения включает в себя решение следующих вопросов:
1. Выбор рационального напряжения распределения;
2. Выбор типа и числа КТП, РП и мест их расположения;
3. Выбор схемы РУ НН ППЭ;
4. Выбор сечения кабельных линий и способ канализации электроэнергии.
Рациональное напряжение определяется на основании ТЭР и для вновь проектируемых предприятий в основном зависит от наличия и значения мощности ЭП напряжением 6 кВ, 10 кВ, наличия собственной ТЭЦ и величины её генераторного напряжения, а также рационального напряжения системы питания. ТЭР не производится в следующих случаях:
-если мощность ЭП напряжением 6 кВ составляет менее 10-15% от суммарной мощности предприятия то рациональное напряжение распределения принимается равным 10 кВ, а ЭП 6 кВ получают питание через понижающие трансформаторы 10/6 кВ.
-если мощность ЭП напряжением 6 кВ составляет более 40% от суммарной мощности предприятия, то рациональное напряжение распределения принимается равным 6 кВ.
44,1 %
Согласно вышесказанному, рациональное напряжение распределения на данном предприятии принимается равным 6кВ.
Число КТП и мощность трансформаторов на них определяется средней мощностью за смену (Sсм) цеха, удельной плотностью нагрузки и требованиями надежности электроснабжения.
Если нагрузка цеха (Sсм i) на напряжение до 1000 В не превышает 150 - 200 кВА, то в данном цехе ТП не предусматривается, и ЭП цеха запитывается с шин ТП ближайшего цеха кабельными ЛЭП.
Число трансформаторов в цеху определяется по выражению:
где: Scм - сменная нагрузка цеха;
Sном. тр. - номинальная мощность трансформатора, кВА.
β - экономически целесообразный коэффициент загрузки:
для 1-трансформаторной КТП (3 категория) β = 0,95;
для 2-трансформаторной КТП (2 категория) β = 0,80‑0,85;
для 2-трансформаторной КТП (1 категория) β = 0,7‑0,75.
Коэффициент максимума для определения средней нагрузки за смену находится по выражению:
Kmax = Кс. / Ки.
Средняя нагрузка за смену определяется по выражению:
Pсм. = Pцеха / Кmax.
Учитывая, компенсацию реактивной мощности, определяем мощность компенсирующей установки: Qк. у. станд.
Средняя реактивная мощность заводского цеха с учетом компенсации, определяется из выражения:
Q'см = Qсм - Qк. у. станд,
где Qк. у. станд - стандартная мощность компенсирующей установки.
Полная мощность, приходящаяся на КТП с учетом компенсации реактивной мощности:
.
Цеховые трансформаторы выбираются по Sсм с учетом Sуд - удельной плотности нагрузки.
Удельная мощность цеха:
S/уд = S/см /F;
где F - площадь цеха .
Результаты расчетов средних нагрузок за наиболее нагруженную смену остальных цехов сведены в таблицу 9.
таб.9
При определении мощности трансформаторов следует учесть, что если Sуд не превышает 0,2 (кВА/м2), то при любой мощности цеха мощность
трансформаторов не должна быть более 1000 (кВА). Если Sуд находится в пределах 0,2-0,3 (кВА/м2) то единичная мощность трансформаторов принимается равной 1600 (кВА). Если Sуд более 0,3 (кВА/м2) то на ТП устанавливаются трансформаторы 2500 (кВА).
В качестве примера определяется число трансформаторов в цехе 8. Так как удельная плотность нагрузки Sуд=0,01 кВА/м<0,2, то целесообразно установить трансформаторы мощностью до 1000 кВА.
Предварительно выбирается 2 трансформатора мощностью по 160 кВА каждый марки ТМ-160/6. Выбранные трансформаторы проверяются по коэффициенту загрузки в нормальном режиме
;
Коэффициент загрузки в послеаварийном режиме:
Расчеты по выбору числа и мощности трансформаторов остальных цехов сведены в таблицу 10.
табл.10
Распределение энергии на территории предприятия осуществляем кабельными линиями.
Двух трансформаторные подстанции с потребителями 1 категории запитываются двумя нитями КЛЭП по радиальной схеме. Так же по радиальной схеме запитываются КТП с трансформаторами 2500 кВА.
Двух трансформаторные подстанции с потребителями 2 и 3 категории запитываются двумя нитями КЛЭП по магистральной схеме, а там где это невозможно из-за больших нагрузок - по радиальной схеме.
Для определения расчетной нагрузки кабельных линий необходимо определить потери мощности в трансформаторах КТП (смотри таб.11).
Где: ΔРхх - потери холостого хода трансформатора, кВт.
ΔРкз - потери короткого замыкания в трансформаторах, кВт.
n - число трансформаторов.
Где: Iхх - ток холостого хода трансформатора, %.
Uк - напряжение короткого замыкания трансформатора, %.
Затем с учетом потерь мощности в трансформаторах находится расчетная мощность, по которой выбирается сечение кабелей
Находится ток в нормальном режиме:
где: n - число кабелей, работающих в нормальном режиме;
Sр - мощность, передаваемая кабелем.
Находится ток в послеаварийном режиме:
По таблице1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле, марки СШв. Выбор сечения КЛЭП производится в соответствии с требованиями ПУЭ с учетом нормальных и после аварийных режимов работы электрической сети. При проверке сечения кабеля по условиям после аварийного режима для кабелей напряжением до 10 кВ необходимо учитывать допускаемую в течение пяти суток, на время ликвидации аварии, перегрузку в зависимости от вида изоляции (при дипломном проектировании можно принять для кабелей с бумажной изоляцией перегрузку до 25% номинальной).
Поэтому допустимая токовая нагрузка кабеля при прокладке в земле в послеаварийном режиме:
Iдоп. пар=1.25. Iдоп.
Допустимая токовая нагрузка кабеля при прокладке в земле в нормальном режиме:
Iдоп. н. р. =Iтабл.
В качестве примера выбирается сечение кабельной линии ГПП-ТП цех.5.
По таблице 1.3.18 [1] выбирается ближайшее стандартное сечение. Предварительно принимается кабель трехжильный с алюминиевыми жилами для прокладки в земле марки СШв сечением F = 70мм2, Iдоп. = 245А.
Допустимая токовая нагрузка кабеля при прокладке в воздухе в нормальном режиме:
В послеаварийном режиме:
Результаты расчета сведены в таблицу 12,13.
Схема подключения кабелей показана на рисунке 6 и 7.
табл.11
табл.12
табл.13
Рис.6 Трассы КЛЭП 6 кВ.
Коротким замыканием (К. З.) называется всякое случайное или преднамеренное, не предусмотренное нормальным режимом работы, электрическое соединение различных точек электроустановки между собой и землей, при котором токи в аппаратах и проводниках, примыкающих к месту присоединения резко возрастают, превышая, как правило, расчетные значения нормального режима.
Основной причиной нарушения нормального режима работы систем электроснабжения является возникновения К.З. в сети или в элементах электрооборудования. Расчетным видом К.З. для выбора или проверки параметров электрооборудования обычно считают трехфазное К. З.
Расчет токов К.З. с учетом действительных характеристик и действительных режимов работы всех элементов электроснабжения сложен.
Поэтому вводятся допущения, которые не дают существенных погрешностей: Не учитывается сдвиг по фазе ЭДС различных источников;
Трехфазная сеть принимается симметричной;
Не учитываются токи нагрузки;
Не учитываются емкостные токи в ВЛЭП и в КЛЭП;
Не учитывается насыщение магнитных систем;
Не учитываются токи намагничивания трансформаторов.
Расчет токов короткого замыкания в установках напряжением выше 1000 В имеет ряд особенностей:
Активные элементы систем электроснабжения не учитывают, если выполняется условие r< (x/3), где r и x-суммарные сопротивления элементов СЭС до точки К. З.
При определении тока К.З. учитывают подпитку от двигателей высокого напряжения.
Расчет токов короткого замыкания производится для выбора и проверки электрических аппаратов и токоведущих частей по условиям короткого замыкания, с целью обеспечения системы электроснабжения надежным в работе электрооборудованием.
Для расчета токов К.З. составляем расчетную схему и на её основе схему замещения. Расчет токов К.З. выполняется в относительных единицах.
Принципиальная схема для расчета токов КЗ. и схема замещения представлена на рисунке 8.
Базисные условия: Sб=1000 МВА, Uб1=115 кВ, Uб2=10,5 кВ.
Базисный ток определяем из выражения
кА.
Сопротивление системы: Хс=
Сопротивление воздушной линии, приведенное к базисным условиям
Х0-удельное реактивное сопротивление провода, Ом/км.
l-длина линии, км; Uб - среднее напряжение;
Сопротивления системы до точки К-1
ХК1=Хс+ХВЛ=0,1255+0,143=0,2685;
Начальное значение периодической составляющей тока в точке К-1:
Принимаем значение ударного коэффициента kуд=1,8, тогда значение ударного тока
Где Куд - ударный коэффициент тока К. З.2.45 [2] по таблице, кА.
I”по (к-1) - начальное действующее значение периодической составляющей, кА.
Мощность короткого замыкания:
МВА.
Точка К-2.
Точка К-2 расположена на напряжении 10 кВ.
Сопротивление силового трансформатора на ППЭ:
Трансформатор типа ТРДН-25000/110 с расщепленной обмоткой Н. Н.
К сопротивлениям до точки К1 прибавляется сопротивление трансформатора.
ХК2=ХК1+Хтр=0,2685+ (0,525+7,35) =8,1135
Ток короткого замыкания от системы:
В этой точке необходимо учитывать подпитку тока КЗ от синхронного двигателя. Определяется сопротивление подпитывающей цепочки. Сопротивление кабельной линии от двигателей ЦЕХа14 до ППЭ
Сопротивление двигателя:
Х”d - сверхпереходное индуктивное сопротивление двигателя
Сопротивления Хкл1 приводятся к параметрам двигателя.
Ток подпитки от синхронного двигателя
Принимаем значение ударного коэффициента kуд=1,93, тогда значение ударного тока
Точка К-3.
Определяется периодическая составляющая тока короткого замыкания в точке К-3.
Сопротивление кабельной линии от шин РУНН ППЭ до РП:
F=240 l=0.175км; Х0=0,071 Ом/км.
ХК3=ХК2+ХКЛ=8,1135+0,0626=8,1761;
Для проверки выключателя на отходящих линиях от РП, вводного выключателя при К.З. за выключателями необходимо знать подпитку от двигателей.
Ток подпитки от двигателей:
Сопротивление кабельной линии от двигателей ЦЕХа12 (двигатели 6кВ) до ППЭ
Полный ток короткого замыкания
=11,2+19,15=30,35 кА;
Приняв ударный коэффициент kуд=1,93, получаем ударный ток К. З.
МВА
Точка К-4
Определяется ток К.З. в точке К-4.
Для практических расчетов принято считать, что всё, находящееся выше шин ВН ТП есть система с бесконечной мощностью (Sс=¥; хс =0).
Расчет производится в именованных единицах для ТП-5 (ЦЕХ5)
Сопротивление трансформаторов ТМЗ-1600/6 таблица 2.50 [2]:
Rт=1 МОм; Хт=5,4 МОм;
Сопротивление трансформатора тока таблица 2.49 [2]:
Rт. т=2,7 МОм Хт, т=1,7 МОм;
Для определения сечения шинопровода находится расчетный ток в ПАР:
А.
Выбирается сечение шин:
где Ip-расчетный ток в аварийном режиме; Jэк - экономическая плотность тока Jэк=1 А/мм2.
мм2.
Выбираются шины прямоугольного сечения 80х8 с Iдоп. =1320 А. с двумя полосами на фазу длина шины 4м.
Сопротивление шин (R0=0.055 мОм/м Х0=0,126 мОм/м):
Rшин=0,11 мОм; Хшин=0,252мОм
Сопротивление автоматического выключателя: Rавт=0,13 мОм; Хавт=0,07 мОм. Результирующее сопротивление схемы замещения до точки K-4:
мОм.
Ток короткого замыкания:
Ударный коэффициент kуд=1,4 - для установок до 1000В.
Значение токов короткого замыкания по цементному заводу.
Таблица 8.
К-1
К-2
К-3
К-4
I”по, кА
18,69
30,44
30,35
18,16
iуд, кА
47,6
83
82,8
35,95
Sk, МВА
3724,4
332
331,17
12,58
Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-2
мм2
где С - тепловая функция, для кабелей 6 кВ с алюминиевыми жилами и бумажной изоляцией С=85 А. с2/мм2.
Определим минимальное сечение кабеля, по условиям термической стойкости, для точки К-3
По режиму К.З. при напряжении выше 1 кВ не проверяются:
1. Проводники, защищенные плавкими предохранителями независимо от их номинального тока и типа.
2. Проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 2,5 МВА и с высшим напряжением до 20 кВ, если соблюдены одновременно следующие условия:
в электрической или технологической части предусмотрена необходимая степень резервирования, выполненного так, что отключение указанных электроприемников не вызывает расстройства технологического процесса;
повреждение проводника при КЗ не может вызвать взрыва или пожара возможна замена проводника без значительных затруднений.
3. проводники к индивидуальным электроприемникам, указанным в пункте 2, а также к отдельным небольшим распределительным пунктам, если такие электроприемники и распределительные пункты являются неответственными по своему назначению и если для них выполнено хотя бы только условие приведенное в пункте 2.2.
в остальных случаях сечение проводников надо увеличить до минимального сечения, удовлетворяющего условию термической стойкости.
Так как в нашем случае выполняются все выше изложенные условия в пунктах 1,2 и 3, то сечения проводников увеличивать не будем
Электрические аппараты, изоляторы и токоведущие устройства работают в трех основных режимах: в длительном режиме, в режиме перегрузки и в режиме короткого замыкания.
В длительном режиме надежная работа аппаратов и других устройств электрических установок обеспечивается ограничением значения и длительности повышения напряжения или тока в таких пределах, при которых ещё гарантируется нормальная работа электрических установок за счет запаса прочности.
В режиме короткого замыкания надежная работа аппаратов, изоляторов и токоведущих устройств обеспечивается соответствием выбранных параметров устройств по условиям термической и электродинамической стойкости. Для выключателей, предохранителей и выключателей нагрузки добавляется условие выбора по отключающей способности.
При выборе аппаратов и параметров токоведущих частей следует обязательно учитывать род установки, температуру окружающей среды, влажность и загрязненность её и высоту установки аппаратов над уровнем моря.
Максимальный рабочий ток:
Разъединитель - это коммутационный аппарат, предназначенный для коммутации цепи без тока. Основное назначение разъединителя создание надежного видимого разрыва цепи для обеспечения безопасного проведения ремонтных работ на оборудовании и токоведущих частях электроустановок. Прежде чем оперировать разъединителем, цепь должна быть отключена выключателем. Во включенном положении разъединитель надежно, без каких-либо повреждений, выдерживает токи К. З.
Намечаем разъединитель РНДЗ1а - 110/1000 У1.
Определяется тепловой импульс при токе К. З.
с.
Вк - тепловой импульс.
Таблица 9.
Расчетные
Параметры
Каталожные
Данные
Условия
Выбора
Uуст. =110 кВ
Uн=110 кВ
Uуст = Uн
Iраб. мах=142 А
Iн=1000А
Iраб. мах = Iн
iу=47,6 кА
Iпред. =80
iу = Iпред.
Bk=66
=3969
Bk =
Страницы: 1, 2, 3, 4, 5, 6