Рефераты. Электроснабжение металлургического завода






Для выбора трансформаторов необходимо знать уровни напряжения внешнего ЭСН и внутризаводских сетей.

Мощность трансформаторов выбирается из максимальной расчетной мощности предприятия, в кВА:


 


где Sр.пред – максимальная расчетная нагрузка предприятия, кВА;

N - число трансформаторов (как правило на ГПП устанавливается 2 трансформатора)

Kзагр - коэффициент загрузки трансформатора (0,7)

Рассчитаем мощность трансформатора ГПП:



Из таблицы литературы [5, C.214 - 219] выбираем трансформатор напряжением 35 кВ типа ТМН – 4000/35, Uном= 4000 кВА, UВН= 35 кВ, UНН= 11кВ, Pх.х.= 5600 Вт, Pк.з.=33,500 Вт, UКЗ= 7,5%

Произведем расчет компенсации реактивной мощности.

Определим количество требуемой для предприятия реактивной мощности:


 

Для поддержания нормальной работы генераторов электрических станции в СЭС должно поддерживаться потребление определенного количества реактивной мощности, которое рассчитывается по формуле, в кВАР:


Qэн.сист = Рр.пред · tgφэн.сист (4.8)


где tgэн.сист при проектировании принимается равным 0,4 кВАр/кВт


Qэн.сист = =1581,6 кВар


Если Qр предпр ≤ Q эн.сист, то искусственной компенсации не требуется.

Если Qр предпр ≥ Q эн.сист,


Qтреб = 2110,5-1581,6=528,9 кВА


Делим на 2 системы шин;


кВАР


Компенсацию реактивной мощности лучше выполнять со стороны 10 кВ.


5. Расчёт токов короткого замыкания

КЗ является наиболее тяжелым видом повреждения сетей электроснабжения. Причинами их возникновения могут быть повреждение изоляции, неисправность электрооборудования, попадание посторонних предметов на токоведущие части и на выводы силовых трансформаторов, ошибки оперативного персонала.

Возникают следующие виды КЗ:

-  трехфазное междуфазное;

-  трехфазное на землю;

-  однофазное на землю.

Расчет токов КЗ выполняется для проверки токоведущих частей и аппаратов на термическую и электродинамическую стойкости при сквозных КЗ и для выбора уставок РЗ и А.

В первом случае расчетные условия выбирают такие, при которых токи КЗ будут максимальны. Для выбора уставок РЗ и А рассчитывают минимальные значения токов КЗ.

Так как внутризаводские сети выполняют с изолированной нейтралью, то необходимо вести расчет 3-фазного тока КЗ, как для наиболее тяжелого режима КЗ.

Ток короткого замыкания рассчитывают для тех точек сети, при коротких замыканиях в которых аппараты и токоведущие части будут находиться в наиболее тяжелых условиях.

В каждый момент переходного процесса IКЗ равен сумме двух составляющих: периодической и апериодической (свободной).


Iк = iп + iа (5.1)


Периодическая составляющая iп протекает от действия ЭДС ИП и изменяется с той же частотой и зависит от сопротивления цепи КЗ.

Она соответствует току нового установившегося режима по окончанию переходного процесса:

Упрощенные методы расчетов IКЗ не учитывают апериодическую составляющую, если ИП удален от места КЗ и представляет собой источник «неограниченной мощности».

Например, таки источником является энергосистема для тупиковых ГПП предприятия.

Если ИП служит собственная ТЭЦ апериодическая составляющая учитывают и для определения токов КЗ используют метод расчетных кривых, так как аналитические методы расчета применять затруднительно.

Без учета апериодической составляющей действующее значение IКЗ равен действующему значению периодической составляющей, в А:


 (5.2)


По периодической составляющей трехфазного КЗ проверяются на термическую стойкость токоведущие части аппаратов. Для проверки их на электродинамическую определяют ударный ток.

Ударный ток – это наибольший из всех мгновенных значений токов короткого замыкания, в А:


 (5.3)


где Kуд - ударный коэффициент, который приводятся в таблицах литературы [5,С 127] в зависимости от места КЗ.

Для вычисления токов короткого замыкания составляют расчетную схему, на которую наносят все данные, необходимые для расчета, и точки в которых следует определить токи КЗ.

По расчетной схеме составляют схему замещения, в которой все элементы представляют виде сопротивлений, выраженных в относительных единицах или в Омах.

При расчете токов короткого замыкания вводят ряд допущений:

· Если источником питания является энергосистема, а не собственная ТЭЦ, то напряжение энекгосистемы (Е) принимают равной единице и апериодическая составляющая тока короткого замыкания равна нулю.

· Если индуктивное сопротивление линии в 3 раза превышает активное, то активное сопротивление не учитывают.

· Подпитку места КЗ от синхронных двигателей в режиме перевозбуждения можно не учитывать, если они отделены ступенью трансформации.

Производим расчет в относительных единицах. Задаемся значением базисной мощности: Sбаз = 100 МВА , Uбаз.ВН = 36,5 кВ, Uбаз.НН =10,5 кВ.

Рассчитаем параметры схемы:

1) Индуктивное сопротивление системы в относительных единицах:



где SК – заданная мощность короткого замыкания системы, в МВА



2) Индуктивное сопротивление воздушной линии в относительных единицах:


  


3) Индуктивное сопротивление силового трансформатора в относительных единицах:


  


Рассчитываем ток КЗ в точке К1:


  


Определяем базисный ток, в кА:




Ток короткого замыкания в точке К1 равен, кА:


  


Ударный ток по (5.3) при Куд =1,8 [5,С 127] равен:


Рассчитываем ток КЗ в точке К2:


  


Определяем базисный ток, в кА:


 


Ток короткого замыкания в точке К2 равен, кА по (5.10)



Ударный ток по (5.3) при Куд =1,92 [5,С 127] равен:



6. Расчёт линий электропередачи

6.1 Расчет кабельных линий 10(6) кВ

При проектировании внутризаводских сетей расчет линий сводится к выбору марки и сечения кабеля.

Марку кабеля выбирают по рекомендациям литературы [1,С. 31, Т. 3.1]

Для прокладки кабеля в земле с средней коррозийной активностью, наличием блуждающих токов, наличием колебаний и растягивающих усилии в грунте выбираем марку кабеля: ААГЕлУ

Выбираем наибольшее сечение кабеля для цеха № 1 «Станция предварительной очистки воды» по следующим четырем условиям:

1) По длительно-допустимому нагреву максимальным расчётным током:

Рассчитываем активную максимальную расчетную нагрузку цеха, в кВт:


Р р.цеха = Р р.гр.А + Рр гр.В (6.1)

Р р.цеха = 347,98 + 51,4 = 399,38 кВт.


Рассчитываем реактивную максимальную расчетную нагрузку цеха, в кВАР:


Qр.цеха = Qр.гр.А + Qр.грВ (6.2)

Qр.цеха = 356,2 + 66,82 = 422,4 кВар


Рассчитываем полную максимальную расчетную нагрузку цеха, в кВА:


Sр.цеха =

Производим расчет тока, в А:


Sр.цеха =  =  кВА

≈60 А


По таблицам ПУЭ соответственно марки, напряжения и из условия, что Iдл.доп. Iр.max находим сечение кабеля: S = при I дл.доп .= 60 A

2) По экономической плотности тока, в мм2:


 


где Iр.нор – ток в линии при нормальном режиме, в А

(в нашем случае: Iр.нор = Ip.max/2 Iр.нор = 30 А)

γЭК - экономическая плотность тока, в А/мм2, определяется по справочным таблицам в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год (Тм) [2]

Тм приводится в литературе [5,C.80]

При Тм = 3000 час/год γЭК = 1,6 А/ мм2

Рассчитываем сечение:



увеличиваем сечение до 16 ммІ

3) Проверяем сечение кабельной линии по условию допустимой потери напряжения:

Допустимые потери в линии согласно ПУЭ не должны превышать (ΔUдоп ) 5% , т.е. должно выполняться условие ΔUдоп ≥ ΔUрасч.

Расчетное значение потери напряжения в линии определяем по формуле, в В:



где Р р.цеха – активная максимальная расчетная нагрузка, в кВ;

Qр.цеха - реактивная максимальная расчетная нагрузка, в кВАР;

Uср ном – среднее номинальное напряжение в линии, в кВ;

R = ro · L – активное сопротивление в линии, в Ом

X = xo · L – индуктивное сопротивление в линии, в Ом

L -длина лини (расстояние от ГПП до ЦТП), в км (определяется по генеральному плану предприятия)

r0 и х0 - - удельные активные и реактивные сопротивления кабелей из литературы [7, С. 175, Т. 2.65]

Из таблиц находим: r0 = 3,12Ом/км, х0 = 0,11 Ом/км.

По генплану измеряем в масштабе длину кабеля с учетом 10 метров для прокладки в ПС, 85 на «змейку» и 2% на линейное расширение.

В результате получили L =0,3 км.

Сопротивления линии:


R = r0 * L = 3,12 * 0,3 = 0,94

X = х0 * L = 0,11 * 0,3 = 0,033


Потеря напряжения в линии, в В:


Потеря напряжения в линии в %:



Оставляем сечение 16 ммІ

4) Проверяем сечение кабеля на термическую стойкость при коротком замыкании в мм2:


Fтерм ≥  , (6.7)


где Bк – тепловой импульс, А2·с


 (6.8)


где  - действующее значение периодической составляющей тока трехфазного КЗ в начале и конце линии (точка К2), в А;

tпривед - приведенное или расчетное время КЗ складывается из времени релейной защиты и собственного времени отключения, в с:


tпривед = tРЗ + tОВ (6.9)


tРЗ - обычно берется в пределе от 1,2 до 2,5 с


tпривед = 2 + 0,05= 2,05 c


СТ – термический коэффициент, учитывающий разницы нагрева в

нормальных условиях и в условиях КЗ, с учетом допустимой температуры и материала проводника, выбираем из литературы [3, С.190], СТ = 92 Ас2/мм2

6.2 Расчёт линий питающих предприятие

Воздушные линии 35 и 110 кВ выполняются неизолированным проводом марки А, АС или самонесущими изолированными воздушными проводами (СИП).

Выбираем провод марки АС.

Производим выбор сечения провода по четырем условиям:

1) По длительно-допустимому нагреву максимальным расчётным током:


Производим расчет тока, в А:



По таблицам ПУЭ из условия, что Iдл.доп.  Iр.max находим сечение провода: S = 10 мм2 при I дл.доп .= 84 A

2) По экономической плотности тока, в мм2:



где Iр.нор – ток в линии при нормальном режиме, в А

(в нашем случае: Iр.нор = Ip.max/2 Iр.нор = 37 А)

 γЭК - экономическая плотность тока, в А/мм2, определяется по справочным таблицам в зависимости от типа проводника и числа часов использования максимальной активной нагрузки в год (Тм) [2]

Тм приводится в литературе [5,C.80]

При Тм = 3000 час/год γЭК = 2,5 А/ мм2

2-х сменная работа

Рассчитываем сечение:



Увеличиваем сечение до 16 мм2

3) Проверяем сечение кабельной линии по условию допустимой потери напряжения:

Допустимые потери в линии согласно ПУЭ не должны превышать (ΔUдоп ) 5% , т.е. должно выполняться условие ΔUдоп ≥ ΔUрасч.

Расчетное значение потери напряжения в линии определяем по формуле, в В:



где Р р.цеха – активная максимальная расчетная нагрузка, в кВ;

Qр.цеха - реактивная максимальная расчетная нагрузка, в кВАР;

Uср ном – среднее номинальное напряжение в линии, в кВ;

R = ro · L – активное сопротивление в линии, в Ом

X = xo · L – индуктивное сопротивление в линии, в Ом

L -длина линии (расстояние от ГПП до районной ПС), в км (указана в задании), L = 4 км

r0 и х0 - - удельные активные и реактивные сопротивления провода марки АС из литературы [7, С. 40, Т. 2.65]

Из таблиц находим: r0 = 2,06 Ом/км, х0 = 0,43 Ом/км.

Рассчитаем активные и реактивные сопротивления лини:


R = ro · L=2,06 * 4 = 8,24

X = xo · L=0,43 * 4 = 1,72


Потеря напряжения в линии в В:



Потеря напряжения в линии в %:

Оставляем сечение 16 мм2



4) Допустимые потери на «корону», проверяются только для ВЛ 110кВ и выше, но практикой эксплуатации установлено и техническим расчетами подтверждено, что потери на корону не превышают допустимых значений, если сечение проводов не более 70 мм2.

В нашем случае напряжение воздушной линии 75 кВ и расчет потерь на «корону» не производим.


6.3 Расчет сборных шин ГПП

Сборные шины распределительных устройств, выбирают в зависимости от конструктивного исполнения, способа присоединения коммутационных аппаратов, ячеек КСО или КРУ и т.д.

В основном сборные шины выполняются из алюминиевых сплавов прямоугольного сечения, одно или многополюсными, или коробчатого сечения.

Выбираем материал шин – алюминий.

 Расчет сборных шин РУ 10 кВ производим в следующем порядке:

1) Выбираем сечение шины из условий длительно допустимого нагрева максимально расчетным током.

Рассчитываем максимальный ток, в А:


 (6.13)


Из условия: Iдл.доп ≥ Iрmax из ПУЭ выбираем шины прямоугольного сечения:

S= 40Ч4 ммІ, Iдл.доп = 480 А

2) Проверяем сечение шин на термическую стойкость при сквозных коротких замыканиях, в мм2:


 (6.14)


Рассчитываем тепловой импульс при токах КЗ, в кА2·с


Вк =·tприв , (6.15)


где - ток трехфазного КЗ в точке К1, в кА;

tприв – расчетное время термической стойкости, в с, которое больше расчетного времени кабельной линии на 0,5 с ( на ступень выше по сравнению с расчетом кабельной линии по условию селективности), т.е.

tпривед =  (6.16)


Ст – термический коэффициент, учитывающий разницу нагрева в условиях нормального режима и в условиях КЗ с учетом допустимой температуры и материала проводника, выбираем из литературы [3, С.190], СТ = 95 Ас2/мм2


Рассчитываем: tпривед =


Оставляем сечение 160 мм2

4) Для проверки электродинамической стойкости жестких шин выполним механический расчет [5].

Установлено, что механический резонанс не возникает, если частота собственных колебаний шинных конструкций меньше 30 Гц или больше 200 Гц.

Для алюминиевых шин частота собственных колебаний, в Гц


 (6.17)


где L- расстояние между изоляторами (длина пролета), м;

J - момент инерции поперечного сечения шины относительно оси перпендикулярно направлению изгибающей силы, см4;

q - площадь поперечного сечения шины, см2.

Определим расчетную длину пролета L, т.е. расстояние между точками крепления вдоль шины.

Если принять fо ≥200 Гц, то


 (6.18)



Расположим шины на изоляторах на ребро.

Момент инерции [5, C], в см4


 


где h – ширина шины, в см;

 b – толщина шины, в см.

Площадь поперечного сечения шины, в см2:


q = h · b (6.20)


Рассчитываем момент инерции:



Проверяем шину на электродинамическую стойкость как статическую систему с нагрузкой равной наибольшей электродинамической силе.

Наибольшее удельное усилие, в Н/м


(6.21)


где Iуд – ударный ток при КЗ на шинах в точке К2, в А;

 а – расстояние между осями крепления, в м;


а = 130 + b (6.22)


130 – минимально допустимое расстояние в свету между токоведущими частями для РУ 10 кВ по ПУЭ, в мм.


а = 160 +40 = 200 мм ≈ 0.2 м


Рассчитываем наибольшее удельное усилие



Изгибающий момент, создаваемый распределенной силой в пределах одного пролета, в Н·м:


 (6.23)


где L – длина пролета, м.

Расчетное напряжение в материале шины, в МПа:


(6.24)


где W – момент сопротивления поперечного сечения оси, перпендикулярной направлению изгиба, в см3.

Момент сопротивления шины, расположенной на ребро, в см3:

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.