Рассмотрим двухквантовые фотопроцессы, протекание которых в молекулярных системах может привести к усложнению анализа продукта с помощью эффекта Шпольского. Наиболее часто можно наблюдать фотоионизацию, фотоокисление, фоторазложение и Т-Т поглощение
В твердом стеклообразном растворе фенантрена- при 77 К приблизительно в центре спектра ЭПР появляется новая линия для перехода [53]. Интенсивность этой полосы поглощения пропорциональна квадрату мощности радиочастотного поля. Это было приписано двухквантовому переходу между несоседними триплетными подуровнями. Такой тип перехода представляет общее явление в спектрах ЭПР триплетных состояний органических молекул.
Общая теория двухквантовых переходов развита Гёпперт-Майером [45]. Впоследствии дополнялась и расширялась многими авторами[2]. Одновременное поглощение двух квантов падающей электромагнитной волны может происходить всегда, когда имеется промежуточное состояние с энергией, близкой, (но не обязательно точно равной) энергии
Рис 1.1
Двухквантовые переходы представляют собой общее явление в абсорбционной спектроскопии различного типа [46- 51]. Для обнаружения двухквантового перехода необходимо, чтобы измерение производилось возможно скорее после облучения. В противном случае слабый двухквантовый сигнал может быть закрыт сигналом свободных радикалов, возникших при разложении растворителя.
Для состояния органических соединений двухквантовые переходы проявляются наиболее легко при магнитных полях, удовлетворяющих условию[52]:
(1.1)
Образование молекулы в электронно-возбужденном состоянии, синглетном или триплетном требует поглощения одного кванта света молекулой в основном состоянии. Поэтому первичный фотохимический акт обычно происходит в результате поглощения одного кванта света (закон Штарка — Эйнштейна). Скорость образования первичного продукта фотохимической реакции очевидно должна быть пропорциональна интенсивности света. Принсгейм [25], по-видимому, был первый, кто в 1923 г. предположил, что возможны фотохимические реакции, происходящие после поглощения кванта света молекулой в электронно-возбужденном состоянии. В этом случае первичный химический акт происходит в результате последовательного поглощения двух квантов света. Такие реакции мы в дальнейшем будем называть двухквантовыми.
где А — исходная молекула; А* — электронно-возбужденное состояние этой молекулы; В — продукт реакции; и — кванты света с одинаковой или разной энергией. Волнистой стрелкой показан темповой процесс (люминесценция или (и) безызлучательный переход в исходное состояние), который определяет собственное время жизни молекулы в состоянии А*. Из схемы сразу видно, что увеличение интенсивности света и собственного времени жизни состояния А* будут благоприятствовать реализации двухквантовых реакций.
Из схемы двухквантовой реакции следует выражение для скорости реакции
, (2.1)
где — интенсивность света; — коэффициент пропорциональности. Было показано, что в неполярных жидкостях различия в энергиях одноквантовой фотоионизации ТМФД определяются различные химические реакции, в частности, с соседними молекулами растворителя. Эти реакции успешно конкурируют с быстрыми процессами внутренней конверсии.
Первичный двухквантовый фотохимический процесс часто сопровождается различными вторичными одноквантовыми фотохимическими процессами. Хотя в жесткой среде, особенно при низких температурах, можно зафиксировать такие частицы, как радикалы, ион-радикалы и электроны, часто трудно установить, образовались ли они в первичном двухквантовом процессе или во вторичных процессах[53].
Молекулы в высших возбужденных состояниях обычно могут вступать с разной вероятностью в различные первичные реакции. Естественно, что изменение среды сильно влияет на направление первичной реакции. Как недавно было установлено, увеличение энергии второго кванта приводит не только к резкому увеличению эффективности двухквантовой реакции, но и к изменению преимущественного направления химической реакции. Учитывая все эти соображения, целесообразно обсуждать двухквантовые реакции не по типам химических реакций а по классам ароматических соединений[53].
Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:
Фотодиссоциация, например:
(3.1)
Фотоокисление, например
(4.1)
Фотоионизация, например
(5.1)
Льюис и Каша [54] предложили два механизма этих реакций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии
(6.1)
либо в результате поглощения фотона триплетной молекулой . (7.1)
В жесткой среде при низкой температуре можно накопить значительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [67] последовательно поглощаются два отдельных фотона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.
Механизм реакции двухфотонной сенсибилизированной реакции разрыва связи молекулы ЛВ растворителя может быть записан следующим образом[55]:
или
,
где X и Y—молекулы растворенного вещества. Различные экспериментальные данные (например, зависимость скорости образования радикалов от концентрации растворенного вещества или интенсивности возбуждающего света) находятся в хорошем согласии с выводом, вытекающим из приведенной кинетический схемы.
Установлено, что длины волн, эффективные для вторичного возбуждения (т.е. ) и приводящие к разложению растворителя, совпадают с длинами волн полос триплет-триплетного поглощения растворенного вещества (X или Y). Например, в случае сенсибилизатора — нафталина — полоса поглощения при 2600К оказывается эффективной в отношении разложения этанола и диэтилового эфира с образованием этильного радикала [56-59]. С другой стороны, переход при 4000 Ǻ эффективен относительно разрыва связи в метилиодиие или трет-бутаноле и образования метильного радикала [60]. Иными словами, эффективность второго кванта hv2, по-видимому, определяется энергией, требуемой для разрыва данной связи в молекуле растворителя, и спектром триплет-триплетного поглощения растворенного вещества. Теренин и сотр. [60] применили эту селективность, исследуя зависимость скорости образования радикалов от концентрации субстрата в системе нафталин (сенсибилизатор) + метилиодид (субстрат) в стеклообразном этанольном растворе.. Это исследование, вероятно, также подтверждает постулированный выше процесс триплет-триплетного переноса энергии.
Появление сигналов ЭПР радикала обычно связано с небольшим уменьшением интенсивности сигнала ЭПР состояния и сильным увеличением интенсивности фосфоресценции [61]. Эти явления и выводы, вытекающие из них, можно суммировать следующим образом[55]:
1. В процессе фотолиза не происходит разрушения молекул сенсибилизатора. Интенсивности сигнала ЭПР состояния и интенсивности испускания более или менее полно восстанавливаются после расплавления стекла и повторного его замораживания.
2. Спектр ЭПР состояния позволяет заключить, что время жизни состояния при протекании процесса фотолиза не меняется. Однако увеличенная интенсивность испускания характеризуется резким сокращением времени жизни. Для случая, когда в качестве сенсибилизатора использовался нафталин, наблюдалось уменьшение до значения, меньшего чем 10 мс, увеличение в 30 раз и уменьшение интенсивности сигнала ЭПР триплетных молекул до 70% [61].
3. Очень вероятно, что образуется некий комплекс триплетной молекулы и радикала. Константа скорости излучательного перехода для «состояния » такого комплекса значительно увеличивается по сравнению с таковой для молекулы, возможно, по тому же механизму, который имеет место в комплексах ароматических молекул с О2 или N0. Поэтому происходит увеличение и уменьшение . С другой стороны, столь мало, что концентрация «состояний » комплекса быстро падает. Таким образом, вклад комплекса в сигнал ЭПР незначителен. Однако образование комплекса приводит к уменьшению концентрации триплетных молекул, не участвующих в образовании комплекса. Поскольку спектр ЭПР обусловлен поглощением триплетных молекул, не связанных в комплекс, из этого следует, что должна уменьшаться, тогда как сильно уменьшаться не должно. Нагревание до плавления образца приводит к исчезновению радикалов и более или менее полному восстановлению первоначальной фотоактивности.
§3. Двухквантовые фотопроцессы с участием триплетных молекул.
Как было отмечено выше Льюис и Липкин[54] показали, что в жестких средах могут протекать три типа первичных фотохимических реакций:
(8.1)
(9.1)
Льюис и Каша [55] предложили два механизма этих реакций: превращение может осуществляться либо в результате поглощения фотона молекулой в основном состоянии
(10.1)
либо в результате поглощения фотона триплетной молекулой . (11.1)
В жесткой среде при низкой температуре можно накопить значительные концентрации триплетных молекул, и поглощение ими фотонов является достаточно вероятным процессом. В брутто реакции [62] последовательно поглощаются два отдельных фотона и при малых интенсивностях возбуждающего света скорость такого двухфотонного процесса пропорциональна квадрату интенсивности.
Одними из первых исследователей рекомбинационного испускания были Дебай и Эдвардс [63]. Они облучали при 77 К твердые растворы легко окисляющихся веществ (фенол, толуидин) и зарегистрировали испускание с чрезвычайно высоким временем жизни (более 100 с). Его затухание было неэкспоненциальным, и авторы предположили, что имеет место последовательность ряда стадий: фотоионизация [по терминологии Льюиса и Липкина — фотоокисление, см. уравнение (8.1)], диффузия захваченных матрицей электронов к ионизованным молекулам и их рекомбинация, в результате которой получается возбужденное состояние:
(12.1)
, (13.1)
(14.1)
Линшиц, Берри и Швейцер [52] исследовали спектры поглощения при низкой температуре стеклообразных растворов лития в аминах. Они обнаружили интенсивный пик при 600 нм, а также более слабое поглощение, простирающееся в инфракрасную область. При освещении полоса 600 нм ослаблялась, а длинноволновый фон усиливался. Поглощение в области 600 нм авторы приписали сильно сольватированным электронам, а длинноволновое поглощение — слабо сольватированным электронам. Затем они облучили стеклообразные растворы легко окисляемых органических соединений и идентифицировали в спектрах поглощения как полосы сольватированных электронов, так и полосы радикалов или ион-радикалов. Рекомбинация при температуре жидкого азота была очень медленной, но при нагревании облученного раствора происходило испускание люминесценции и ослабление полос поглощения и радикалов и сольватированных электронов. Эти результаты доказали, что люминесценция действительно обусловлена рекомбинацией ионов и электронов [52] ((12.1) и (13.1)). Спектр люминесценции оказался идентичным спектру фосфоресценции (т. е. испускание было рекомбинационной фосфоресценцией), переходов типа обнаружено не было, но причиной этого нельзя считать большую скорость интеркомбинационной конверсии, поскольку при фотовозбуждении возникала интенсивная быстрая флуоресценция. Подобные же результаты получили Альбрехт и сотр. [64], которые облучали инфракрасным светом фотоионизированный твердый раствор тетраметил-n-фенилендиамина и зарегистрировали при этом как рекомбинационную фосфоресценцию, так и рекомбинационную замедленную флуоресценцию. Отношение интенсивностей этих видов испускания оказалось значительно больше отношения интенсивностей обычной фосфоресценции и быстрой флуоресценции того же самого образца, что указывало на прямое заселение триплетного состояния в рекомбинационном процессе, а именно
(15.1)
Альтернативный процесс, т. е. заселение электронно-возбужденного синглетного состояния
(16.1)
был постулирован Лимом и сотр. [52], которые облучали при 77 К растворы акрифлавина и родственных красителей в эфир-пентан-этанольном стекле и обнаружили замедленную флуоресценцию, продолжавшуюся несколько секунд. Кроме того, они зарегистрировали по поглощению промежуточное вещество, идентифицированное как положительный ион-радикал — продукт фотоионизации. За исключением ранней стадии, замедленная флуоресценция затухала экспоненциально со скоростью, равной скорости исчезновения ион-радикалов. Интегральная интенсивность замедленной флуоресценции и начальная концентрация ион-радикалов оказались пропорциональными интенсивности возбуждающего света, и авторы сделали вывод об однофотонном механизме возбуждения. Эффективность замедленной флуоресценции увеличивалась при уменьшении длины волны возбуждающего света. Эти результаты были интерпретированы в рамках модели, подобной предложенной Альбрехтом и сотр. для люминесценции тетраметил-n-фенилендиамина, хотя позднее Альбрехт и Кадоган [64] заново рассмотрели свои результаты уже исходя из двухфотонного механизма.
Вляние длины волны возбуждающего света на замедленную флуоресценцию обнаружили также Стивенс и Уокер [52], исследовавшие при 77 К перилен в жидком парафине. В их опытах спектр возбуждения замедленной флуоресценции приблизительно совпадал со спектром триплет-триплетного поглощения перилена, и они приняли двухфотонный механизм, включающий фотоионизацию триплетного состояния и рекомбинации, в результате которой заселяются и триплетное и возбужденное синглетное состояния:
(17.1)
(18.1)
(19.1)
Впоследствии были высказаны сомнения в правильности этой интерпретации из-за возможного влияния фосфоресценции кювет или примесей в растворе .
Портер и сотр. [52] исследовали двухфотонные фотохимические процессы, индуцированные поглощением света триплетными состояниями в твердых средах при температуре 77 К. Для растворов ароматических соединений в алифатических углеводородах, они установили два типа процессов: а) ионизация растворенного вещества; б) сенсибилизированная диссоциация растворителя на атомы водорода и свободные радикалы и отрыв последними атомов водорода от растворителя или растворенного вещества, в результате чего получаются радикалы растворенного вещества. Под действием инфракрасного света или при слабом нагревании наблюдались флуоресценция и фосфоресценция, возникавшие в результате рекомбинации ионов и электронов. Отношение интенсивностей фосфоресценции и флуоресценции было выше, чем при обычном оптическом возбуждении, и в этом отношении результаты были идентичны результатам Альбрехта и сотр. [64], впоследствии пересмотренным с точки зрения двухфотонного механизма.
Опыты Смоллера [65] с растворами индола в метаноле при 77 К не позволили сделать выбор между тремя предложенными Смоллером механизмами образования радикалов спирта:
1. Двухквантовая реакция с промежуточным образованием триплетного состояния индола,
2. Одноквантовая реакция молекулы индола в низшем триплетном со стоянии с молекулой спирта.
3. Одноквантовая реакция возбужденной молекулы индола в синглетном состоянии с молекулой спирта.
Таким образом, в этой работе не было установлено даже участие низшего триплетного состояния сенсибилизатора в реакции образования радикалов спирта. Это сделано в работе Холмогорова и др. [22] для растворов ароматических аминов в спиртах. Однако авторы этой работы не предполагали двухквантового механизма образования радикалов спирта. Такой механизм образования радикалов в аналогичных системах доказан в работах Багдасарьяна и др. [5, 6] применением точных кинетических методов: исследованием зависимости скорости образования радикалов от интенсивности света и частоты прерывистого освещения. Последний метод позволил установить, что образование радикалов — непосредственный результат поглощения кванта света промежуточным состоянием со временем жизни, совпадающим со временем жизни низшего триплетного состояния. Двухквантовый механизм этих реакций подтвержден в работе Холмогорова и др. [66]. Вскоре было найдено, что многие ароматические соединения, включая бензол, в растворах алканов, спиртов и эфиров при 77 К вызывают двухквантовую реакцию образования радикалов из растворителя [67,68]. Козлов и Шигорин [69] обнаружили двухквантовую реакцию образования радикала трифенилметила при освещении замороженных растворов трчфенилметана в различных матрицах (этанол и др.).
В 1965 г. было показано, что фотоионизация ароматических аминов при 77 К также представляет двухквантовую реакцию [52]. Несколько раньше это было обнаружено при фотоионизации ароматических углеводородов в стеклообразных растворах борной кислоты при комнатной температуре [66]. В дальнейшем оказалось, что образование радикалов спирта в растворах ароматических аминов, по крайней мере частично, а в некоторых случаях— полностью, представляет вторичную реакцию . Первая стадия—двухквантовая фотоионизация:
вторая стадия — одноквантовая реакция фотовозбужденного электрона со спиртом:
.
Для растворов диметил- и тетраметил-n-фенилендиаминов все радикалы спирта образуются по этому механизму. После начального нестационарного периода скорость образования радикалов определяется скоростью двухквантовой фотоионизации.
Многие ароматические молекулы в триплетном состоянии в жесткой среде имеют время жизни больше одной секунды. В этих условиях даже при умеренных интенсивностях света концентрация молекул в триплетном состоянии становится столь значительной, что можно обнаружить поглощение света молекулами в триплетном состоянии. Это явление, получившее название триплет-триплетного поглощения, впервые было обнаружено в 1941 г. Льюисом и сотр.[54] Ароматическое соединение в стеклообразующем растворителе при температуре жидкого воздуха освещалось УФ-светом в перпендикулярном направлении — источником сплошного света. Поглощения этого«зондирующего» луча регистрировалось фотографическим методом. Открытие метода импульсного фотовозбуждения позволило Портеру и Виндзору [55] обнаружить спектры Т—Т-поглощения в жидкой среде. В настоящее время часто применяют фотоэлектрическую регистрацию спектра Т—Т-поглощения «по точкам». В качестве источника возбуждения получили также применение лазеры, дающие УФ-излучение. Получение спектров Т—Т-поглощения в видимой области в настоящее время не представляет больших трудностей. Гораздо труднее получить спектр Т— Т-поглощения в УФ-области, где он обычно перекрывается со спектром поглощения . Определение коэффициентов экстинкции Т—Т-поглощения, особенно в УФ-области, также встречает трудности, так как т требует определения концентрации молекул в триплетном состоянии. Ниже рассмотрены основные методы определения концентрации молекул в триплетном состоянии и коэффициентов экстинкции Т—Т-поглощения [53].В жидких системах посредством мощного импульса света все молекулы переводятся из состояния в состояние . Измерение оптической плотности при помощи зондирующего луча сразу после окончания импульса позволяет приравнять концентрацию триплетных молекул к исходной концентрации [70]. Если при увеличении интенсивности света оптическая плотность для всех длин волн не изменяется, то это служит доказательством справедливости сделанного допущения. Этим методом были получены спектры Т—Т-поглощения и коэффициенты экстинкции в области от 200 до 1000 нм для ряда ароматических углеводородов [53]. Гелий-кадмиевый лазер был применен для определения ряда красителей [71]. Если условия эксперимента не позволяют перевести, все молекулы в состояние , то измеряется уменьшение оптической плотности в полосе поглощения Концентрация триплетных состояний п определяется из равенства , где — коэффициент экстинкции поглощения, — толщина слоя. Лазерное возбуждение применялось и в этом варианте метода [71]. Триплет-триплетный перенос энергии (Т—Т-перенос) был использован для определения коэффициента экстинкции Т—Т-поглощения. При импульсном радиолизе раствора бензофенона (0,1 М) в циклогексане происходит образование триплетного состояния бензофенона. В этом состоянии бензофенон количественно вступает в реакцию с циклогексаном, образуя кетильный радикал. Концентрация кетильного радикала может быть определена, так как коэффициент экстинкции кетильного радикала известен (= 5,1-10-3 л/молъ-сек) [1]. При добавлении ароматических молекул, триплетный уровень которых ниже уровня Т1 бензофенона, концентрация кетильных радикалов снижается в результате Т—Т-переноса энергии от молекул бензофенона к молекулам добавленного соединения, которые являются акцепторами энергии. Уменьшение концентрации кетильных радикалов равно концентрации возникших триплетных состояний акцептора. Измерив оптическую плотность триплетных состояний акцептора, можно определить для акцептора [72]. В жестких средах большинство предложенных методов определения концентрации триплетных состояний основано или на исследовании кинетики образования триплетов, или на измерении в различных условиях стационарной концентрации триплетов. В некоторых вариантах этого метода одновременно можно определить величину .
Страницы: 1, 2, 3, 4, 5, 6