Рефераты. Элегазовый генераторный выключатель 10 кВ, 63 кА, 8000 А







Выключатель прошел все предусмотренные нормами виды типовых испытаний.

При испытании на нагрев оболочка выключателя выполняла роль «обратного» провода.

При длительной нагрузке током 16 кА и естественном охлаждении наибольшее превышение температуры контактных деталей было равно 44(при допустимой норме 65  для посеребренных контактов). При длительном токе нагрузки 36 кА и продольном обдуве шинопровода и выключателя воздухом, при производительности вентилятора 250 наибольшее превышение температуры было в пределах 53. Как показали дополнительные расчеты, выключатель будет соответствовать номинальному току 36 кА, если длина пофазно-экранированных шинопроводов не превышает 35 м.

Возможность отключения токов с большой апериодической составляющей, когда ток в одной из фаз не переходит через нулевое значение, было проверено расчетным путем, при том в расчет были введены величины падения напряжения на дуге, полученные экспериментальным путем (порядка 9 мОм при отключаемом токе 110 кА и 25 мОм при токе 60 кА). Большое внимание при исследованиях было уделено коммутационному ресурсу контактов. В условиях эксплуатации выключателей на ГАЭС дважды в сутки происходит переключение с генераторного на двигательный режим, причем по условиям работы гидротурбин при этом практически должен отключаться номинальный ток 16 кА.

Поскольку по техническим условиям ревизия и смена контактов должна осуществляться не чаще, чем один раз в три года, то ресурс контактов должен обеспечить не менее 365*2*3=2200 отключений до ревизии.

Для подтверждения этого требования было проведено 1000 отключений в однофазном режиме тока 16,3 кА при длительности горения дуги 0,65-0,75 периода. В процессе испытаний была установлена минимальная длительность горения дуги 0,2-0,35 периода.

Технические характеристики элегазовых генераторных выключателей, выпускаемых компанией АББ представлены в табл.1.4 и табл. 1.5. Конструкции выключателей и их основные размеры показаны на рис.1.17 – 1.19.


Рис 1.17. Генераторный выключатель типа HEK

1 – трансформатор тока, 2 – заземлитель, 3 – силовой выключатель, 4 – разъединитель, 5 – корпус выключателя.

Таблица 1.4.

Технические данные выключателя типа HEK/HEI.

Параметры выключателя


HEK1

HEI1

HEK2

HEI2

HEK3

HEK4

HEK5

HEK6

Номинальное напряжение

кВ

24

24

24

24

24

24

24

24

Испытательное напряжение относительно земли 50Гц, 1 мин

кВ

60

60

60

60

80

80

80

80

Для промежутка разъединителя 1

кВ

70

70

70

70

88

88

88

88

Испытательное напряжение грозового импульса 1,2/50 мкс

кВ

125

125

125

125

150

150

150

150

Для промежутка разъединителя 1

кВ

145

145

145

145

165

165

165

165

Номинальный ток2 3 при естественном охлаждении 50 Гц

А

7000

8000

8500

10000

11000

13000

11500

13500

Номинальный ток2 3 при естественном охлаждении 60 Гц

А

7000

8000

8000

9500

11000

12500

11500

13000

Номинальный ток2 3 при вынужденном охлаждении 50+60 Гц

А

-

-

-

-

16500

20000

16500

20000

Номинальный ток отключения

кА

63

63

63

63

100

100

120

120

Номинальный ток включения

кА

190

190

190

190

300

300

360

360

1 только для варианта с разъединителем

2 номинальный ток соответствует окружающей температуре мах 40оС.

3 Температура для токоведущей части выключателя: для проводников 90 оС;


Рис 1.18. Генераторный выключатель типа НЕК с встраиваемым заземлителем и трансформатором тока в баковом исполнении.

1 – трансформатор тока, 2 – заземлитель, 3 – силовой выключатель, 4 – привод силового выключателя, 5 – разъединитель, 6 – бак высокого давления, 7 – компрессор, 8 – блок управления, 9 – окно для ремонта, 10 – предохранительные окна.


Таблица 1.5.

Монтажные параметры для генераторного выключателя типа НЕК, мм.

Тип

A1

B3

C3

D

F2

G

H

HEK1

HEK2

1200

396

4133

900

1600-

2867

740

1320

HEK3

HEK4

1400

4020

4800

1124

1600-

2867

872

1320

HEK5

HEK6

1400

4020

4800

1124

1700-

2967

872

1320

1 Возможны другие размеры

2 После установки

3 Зависит от расстояния между фазами

Рис 1.19. Схема генераторного выключателя типа HG в баковом исполнении с встраиваемыми трансформатором тока и трансформатором напряжения.

1 – дугогасительная камера, 2 – привод, 3 – портал, 4 – камера (бак), 5 – блок управления, 6 – шина заземления, 7 – заземлительный выход для корпуса, 8 – подножник, 9 – механический указатель положения, 10 – основной токоподвод, 11 – трансформатор напряжения, 12 – трансформатор тока электромагнитный.


Таблица 1.6.

Технические данные для генераторных выключателей типа HG.

Параметры



Номинальное напряжение

кВ

17,5

Испытательное напряжение относительно земли 50/60Гц, 1 мин

кВ

50

Испытательное напряжение грозового импульса 1,2/50 мкс

кВ

110

Номинальный ток 50/60 Гц1 для конструкции в корпусе при естественном охлаждении

А

5000

Номинальный ток отключения

кА

50

Номинальный ток включения (амплитуда)

кА

138

1 Номинальный ток соответствует окружающей температуре мах 40оС. Температура для токоведущей части выключателя: для проводников 90 оС;

 

Для выявления областей больших токов и больших потерь, а также степени ограничения тока на разных частотах под влиянием поверхностного эффекта был проведен двумерный конечно-элементный анализ распределения тока в отдельных компонентах.

Для повышения точности модели итерационный процесс подкреплялся физической проверкой результатов, что позволило в конечном итоге найти оптимальное поперечное сечение проводника и идеальное распределение тепловых нагрузок в конструкции.

Ребра специальной конструкции, расположенные вокруг корпуса выключателя, увеличивают площадь его поверхности, способствуя тем самым максимальной теплоотдаче. Принудительное воздушное охлаждение, улучшающее конвективный теплообмен, позволяет повысить номинальный ток с 24 кА (при естественном охлаждении) до 38 кА.


Выводы


В данной главе рассмотрены особенности конструкции генераторных выключателей и преимущества установки их в генераторных цепях. При анализе отключаемых токов генераторных выключателей на различные классы напряжения при протекании токов к.з. от генератора и от системы выяснено, что современные генераторные включатели на напряжение 16-30 кВ способны отключить токи к.з. до 275кА . На основании этого были рассмотрены основные схемы включения ГВ на подстанциях. Приведены параметры и конструкции элегазовых генераторных выключателей ведущих зарубежных фирм. На основе чего можно говорить об актуальности проектирования элегазового генераторного выключателя 10кВ, 63кА, 8000А.


Глава 2. Взаимодействие выключателя с сетью


2.1 Анализ переходного восстанавливающего напряжения


При отключении короткого замыкания любого вида на контактах выключателя после погасания дуги восстанавливается переходное напряжение, обусловленное собственными параметрами сети в месте установки выключателя.

Формы ПВН в реальных сетях могут быть обобщены и заданы в виде огибающих, определяемых двумя параметрами: напряжением , условным временем его достижения ПВН  (рис.2.1) для выключателей с кВ. Из-за влияния емкости со стороны источника питания происходит запаздывание роста ПВН на нормированное время  [1].


Рис. 2.1. Номинальные характеристики ПВН, определяемого двумя параметрами

1 – условная граничная линия ПВН; 2 – линия запаздывания ПВН (параллельная граничной линии)

Параметры ПВН определяются следующими соотношениями:


 (2.1)

, (2.2)


для выключателей с  кВ:


                                                                           (2.3)

                                                                                        (2.4)


где  - полюсное возвращающее напряжение,  - коэффициент первого гасящего полюса (при трехфазном коротком замыкании),  - коэффициент превышения амплитуды.

Для выключателей с 35 кВ =1,5.

Значения , составляющее от 1,4 до 1,54, приведены в ГОСТ Р 5265 – 2006.

Номинальные характеристики ПВН для генераторных выключателей приведены в табл. 2.1


Таблица 2.1

Номинальные характеристики генераторных выключателей

,

кВ

,

кА

,

кВ

,

мкс

,

мкс

,

кВ/мкс

6/7,2

80

13,3

3,8

1

3,5

10/12

50

22,0

6,2

1

3,5

10/12

63

22,0

5,5

1

4,0

15/17,5

100

32,2

7,2

1

4,5

20/24

100

44,2

9,9

1

4,5

20/24

125

44,2

8,8

1

5,0

20/24

160

44,2

8,8

1

5,0

24/26,5

160

48,8

8,9

1

5,5

24/26,5

200

48,8

8,9

1

5,5

 - скорость ПВН.


2.2 Расчет переходного восстанавливающего напряжения


По данным табл. 2.1


=22 кВ, =5,5 мкс, =1 мкс и =4 кВ/мкс

Находим:


 кВ

 мкс

 мкс


По полученным данным строим характеристику ПВН (рис. 2.2)

Рис. 2.2. Характеристика переходного восстанавливающего напряжения

1 – условная граничная линия ПВН; 2 – линия запаздывания ПВН; 3 - кривая реального ПВН


2.3 Анализ влияния малых индуктивных токов


При отключении малых токов, дуга, как правило, подвергающаяся интенсивному воздействию дугогасящего вещества, может погаснуть ранее момента перехода отключаемого тока через нулевое значение. Это явление, называемое обычно срезом тока, возникает чаще всего при отключении токов намагничивания холостых трансформаторов или реакторов, составляющих единицы-десятки ампер.

Физическая картина рассматриваемого явления может быть проанализирована в расчетной схеме рис.2.1,а.

В этой схеме , - индуктивность и емкость источника ЭДС;  - индуктивность соединительных шин; ,  и  - параметры схемы замещения отключаемого электрооборудования (трансформатора или реактора).


Рис. 2.3. Стилизованные осциллограммы тока и напряжения (б) в схеме замещения (а)


Срез тока, как правило, происходящий на ниспадающей части отключаемого синусоидального тока (рис.2.3,б), обусловлен возбуждением высокочастотных колебаний в контуре  -  -  при интенсивной деионизации канала дуги и резком изменении падения напряжения на нем. При этом суммарный ток (высокочастотная составляющая, наложенная на составляющую промышленной частоты) проходит через нулевое значение и дуга гаснет. После обрыва тока в выключателе возникает колебательный процесс в контуре - , обусловленный энергией, в основном запасенной в магнитной цепи трансформатора или реактора -  ( - ток в индуктивном элементе в момент обрыва тока в выключателе). В колебательном процессе обмена эта энергия оказывается запасенной в электростатическом поле емкости , что может привести к существенному повышению напряжения на ней. Максимальное напряжение на отключаемом оборудовании может быть определено, исходя из выражения для энергетического баланса (при пренебрежении потерями энергии во время переходного процесса, моделируемыми в виде потерь на сопротивлении  ( рис. 2.3,а):


 , (2.5)


где  - напряжение на емкости  в момент обрыва тока в выключателе.

Из выражения (2.5) следует


 (2.6)


где  - характеристическое сопротивление схемы замещения отключаемого элемента.

Стилизованные осциллограммы отключаемого тока и напряжений показаны на рис. 2.3,б.

Со стороны источника также возникает высокочастотный процессобмена энергии определяемый относительно небольшой энергией, запасенной в индуктивности источника, и, следовательно, характеризующийся малой амплитудой колебаний. Частота высокочастотных колебаний в схеме замещения отключаемого оборудования определяется как . Напряжение, восстанавливающееся на контактах выключателя, показано на рис. 2.3,б штриховкой. Первый пик этого напряжения называется пиком гашения, второй - восстановления напряжения, зависящим в основном от величины тока среза  и параметров отключаемой цепи.

Повышение коммутационного ресурса комбинированных генераторных выключателей может быть достигнуто путем применения вакуумных дугогасительных камер, характеризующихся нестабильностью горения дуги при малых отключаемых токах. Ток среза в этих камерах колеблется в диапазоне 5…30 А. Согласно экспериментальным данным ток среза зависит не только от типа дугогасительного устройства, но и от величины емкости, шунтирующей выключатель :


 (2.6)


( - в фарадах,  - в амперах),

где  - экспериментальный коэффициент; =0,5 – для воздушных, маломасляных и элегазовых выключателей, =0,03 – для вакуумных выключателей.

Явление среза тока является актуальным не только для элегазовых выключателей. Одним из способов решения это проблемы является установка ограничителей перенапряжения, по обе стороны от выключателя.


2.4 Анализ влияния сквозных токов короткого замыкания


Стойкость аппарата при сквозных токах к.з. определяет его способность противостоять механическим и тепловым воздействиям, возникающим при прохождении этих токов через включенный аппарат. Стойкость аппарата характеризуется наибольшим пиком (электродинамическая стоимость) , равные , начальным действующим значением периодической составляющей  равным , среднеквадратическим значением тока за время его протекания (термическая стойкость) , которое обычно не менее , и временем протекания тока к.з.  (временем к.з.).

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.