За даними стовпців 1 (абсциси) і 4 (ординати) викреслюю графік 1.
Рисунок 2.1 – Статистична функція розподілу базового графіка
2.3 Знаходжу ymin мінімальне і ymax максимальне значення випадкової величини згідно з інтегральною імовірністю 95%, якій відповідають імовірності Ex = 0,05 для мінімального і Ex = 0,95 для максимального значень.
ymin=32,5 мм;
ymax=132,5 мм.
З табл. 1 виписую найменшу ум і найбільшу уМ ординати – повинно бути:
ум < ymin, уМ > ymax.
ум=18 мм;
уМ=145 мм.
18<32,5
145>132,5
Умова виконується.
Висновки:
1. Випадковий графік має невипадкові характеристики.
2. Використання згідно з ГОСТ 13109-97 практично достовірних значень показників ЕМС дозволяє заощаджувати капітальні вкладення на забезпечення ЕМС.
Практичне заняття № 3
АПРОКСИМАЦІЯ СТАТИСТИЧНОЇ ФУНКЦІЇ РОЗПОДІЛУ
Мета – перевірка можливості апроксимації статистичної (опитної) функції розподілу теоретичними імовірнісними розподілами: рівномірним і нормальним.
Критерій перевірки. Відповідність теоретичної функції розподілу F (у) статистичній (у) виконується за найбільш простим критерієм Колмогорова:
. (3.1)
де N – кількість дослідів (N0=50)
3.1 Рівномірний закон розподілу характеризується прямолінійною функцією розподілу Fп(у) у межах
мм,
мм. (3.2)
де – yc = 85 мм, σy = 33 мм беремо з практичної роботи №2.
Теоретичний діапазон змінення
kп = yпМ – yпм =142-28=114 мм. (3.3)
Наносимо точки а і b з координатами (упм, 0) і (упМ, 1) на графік статистичної функції, який зображений на рис. 3.1. Ці точки з'єднуємо прямою.
Перевіряємо можливість прийняття рівномірного розподілу для апроксимації статистичної функції розподілу за критерієм Колмогорова:
,
3.2 Нормальний закон розподілу характеризується функцією розподілу Fн(у) від – до . Для цього розрахуємо необхідні величини та занесемо їх
до табл. 3.1.
. (3.4)
У верхній частині таблиці у < ус , тому ці значення є від'ємними. З таблиці Б.1 по абсолютним величинам |z| знаходимо значення Φ(|z|) і заносимо їх до табл. 3.1. Шукані значення функції нормального розподілу
при y < yc . (3.5)
У нижній частині таблиці при у > ус аргумент z є позитивним. У цьому випадку знайдені з таблиці Б.1 значення Φ(|z|) заносимо зразу в останній стовпець, оскільки
при y > yc (3.6)
Нижня частина стовпця Φ(|z|) не заповнюється.
Таблиця 3.1 – Функція розподілу нормального закону
y, мм
z
Φ(|z|)
Fн
0
-2,58
0,9951
0,0049
5
-2,42
0,9922
0,0078
10
-2,27
0,9884
0,0116
15
-2,12
0,9826
0,0174
20
-1,97
0,9756
0,0244
25
-1,82
0,9656
0,0344
30
-1,67
0,9525
0,0475
40
-1,36
0,9099
0,0901
50
-1,06
0,8554
0,1446
60
-0,76
0,7764
0,2236
70
-0,45
0,6736
0,3264
80
-0,15
0,5596
0,4404
85
0,5
90
0,15
100
0,45
110
0,76
120
1,06
125
1,21
0,8869
130
1,36
135
1,52
0,9345
140
1,67
145
1,82
150
1,97
Рисунок 3.1 – Функції розподілу: – статистична, Fп – рівномірного і Fн – нормального законів розподілу
3.3 Зіставляємо розрахункові значення: статистичні і теоретичні. Розходження вважається прийнятим, якщо воно не перевищує 10% від найбільш можливої ординати – 150 мм.
Таблиця 3.2 – Зіставлення розрахункових значень
Розподіл
Розрахункові значення
Розбіжності, %
min, мм
max, мм
min
max
Статистичний
32,5
132,5
Рівномірний
33,5
136,5
0,67
2,9
Нормальний
30,5
139,5
-1,3
4,7
Мінімальні і максимальні розрахункові значення:
- для рівномірного розподілу
=мм,
мм, (3.7)
де дані беремо з п.3.1,
- для нормального розподілу
мм. (3.8)
Розраховуємо відносні розходження:
, (3.9)
;
. (3.10)
1. Згідно до розрахунків рівномірний і нормальний розподіли є прийнятними за критерієм Колмогорова, тому ми приймаємо нормальний закон, як такий, що за фізичним змістом більш відповідає умовам опиту.
2. За розрахунками абсолютні величини не перевищують допустиме значення розходження 10%.
Практичне заняття № 4
ОЦІНЮВАННЯ ЕМС ЗА НОРМАМИ НА ВІДХИЛЕННЯ НАПРУГИ
Мета – перевірка дотримання норм стандарту [1] на однохвилинні відхилення напруги.
4.1 Базовий графік (гр. з пр. з. № 1) вважається графіком змінення за часом t діючих значень U напруги у відносних одиницях (в.о.). Зв'язок між ординатами у у мм і напругою дається співвідношеннями:
U = 1 + 0,0008·y. (4.1)
4.2 Базовий графік напруги розбиваємо на однохвилинні ділянки: для цього через кожні 40 мм проводимо вертикальні лінії. Для першої ділянки перевіряємо точність візуальної обробки шляхом розрахунку точного значення:
, (4.2)
де підсумовуються квадрати 8 перших значень з табл. 1.
Таким чином, графік уθ(t) є ступеневим з кількістю ступенів Ν = 720/40 =18. Величини ступенів заносимо у стовпець 2 табл. 4,1, у якій i – номер ступеня (стовпець 1). В стовпці 3 їх розташовуємо у порядку зростання – позначення уθз. У стовпець 4 заносять значення функції розподілу
, (4.3)
перше з яких дорівнює 1/40 = 0,025, а останнє – одиниці.
Таблиця 4.1 – Дані для розрахунку однохвилинних напруг
i
yθ, мм
yθз, мм
1
111,2
0,056
2
75
0,11
3
55
0,17
4
0,22
95
0,28
6
0,33
7
115
0,39
8
0,44
9
0,56
11
0,61
12
13
0,72
14
0,78
0,83
16
0,89
17
0,94
18
Мінімальне розрахункове значення уθmin та максимальне значення уθmax знаходимо з табл. 4.1. Підставивши їх в одну з формулу (4.1), отримаємо мінімальне Uθmin і максимальне Uθmax розрахункові значення однохвилинних напруг Uθ у в.о. ( в стандарті [1] – Uу):
уθmin =40 мм,
уθmax=115 мм,
Uθmin = 1 + 0,0008· уθmin=1+0,0008·40=1,03,
Uθmax = 1 + 0,0008· уθmax=1+0,0008·115=1,09.
Uθmin ≥ 0,95 – виконується,
Uθmax ≤ 1,05 – не виконується.
Порівняємо значення Umin та U max (які перерахуємо за формулою (4.1) для уmin=32,5 мм та уmax=132,5 мм) з Uθmin і Uθmax:
Umin= 1 + 0,0008·32,5 =1,026,
U max = 1 + 0,0008·132,5=1,11.
Uθmin ≥ Umin , Uθmax ≤ U max
Рисунок 4.1 – Статистична функція розподілу базового графіка та функція розподілу відхилення напруги
3. Норми стандарту [1] на однохвилинні відхилення напруги не виконуються, тому що максимальне значення відхилення напруги перевищує допустимі 5%.
4. Однолінійне усереднення зменшує диапозон змінення графіка.
Страницы: 1, 2