Коефіцієнт потужності в цій системі близький до значення коефіцієнта потужності в системі ТП – Д, якщо в якості ланки постійного струму використати тиристорний перетворювач.
4.2 Особливості енергетики вентильних електроприводів
Для регулюємих електроприводів найбільш загальним і ефективним шляхом вирішення проблеми енергозбереження на даному етапі є використання вентильних перетворювачів. При використанні сучасних напівпровідникових пристроїв – тиристорів, транзисторів в різноманітних виконаннях, ККД перетворювачів достатньо великий. Так для тиристорного перетворювача з m – фазною схемою випрямлення, в якій на інтервалі провідності обтікаються струмом n послідовно увімкнених вентилів його можна оцінити за допомогою співвідношення:
(4.2.1)
де - ККД силового трансформатора, який забезпечує потенціальну розв'язку силових ланцюгів електропривода та обмеження струмів короткого замикання при пробоях тиристорів. - падіння напруги на вентилі; - номінальна вихідна напруга перетворювача.
Якщо з достатнім запасом прийняти , то для мостової схеми перетворювача (n=2) при U1=380 В і Uт.п.ном=440 В ККД керованого випрямляча складе:
Те ж значення отримаємо і для перетворювача з нульовою схемою випрямлення (n=1), Але при тій же напрузі живлення номінальна напруга перетворювача в 2 рази менша. Для трансформаторів 10 – 1000 кВт значення ККД лежать в межах 0,95 – 0,98, тобто:
Таким чином, в цьому випадку заміна системи генератор – двигун системою тиристорний перетворювач – двигун дозволяє економити близько 7% споживаної енергії і знизити втрати в перетворювальному агрегаті приблизно в 3 рази. Це суттєве підвищення енергетичної ефективності електропривода.
Але оцінку енергетичної ефективності вентильних електроприводів на основі обліку втрат в перетворювальному агрегаті необхідно доповнити оцінкою негативних властивостей вентильних електроприводів, пов'язаних з дискретним принципом перетворення і регулювання напруги перетворювачів. Ці особливості реалізуються в двох головних напрямках – всередині електропривода в результаті впливу форми струмів і напруг, які формує перетворювач, на роботу двигуна і в системі електропостачання в результаті впливу споживаних перетворювачем струмів на роботу живильної мережі.
Основу сучасної перетворювальної техніки складають тиристори з природною комутацією. При природній комутації реалізується максимальна простота схемотехніки, відсутність перенапруг, мінімальна маса, габарити і вартість перетворювачів.
Напруга і струм, які формує перетворювач з природньою комутацією для фази асинхронного двигуна в системі перетворювач частоти – асинхронний двигун визначається пульсністю перетворювача m, кутом регулювання α, ЕРС обертання в навантаженні е і індуктивністю силового ланцюга двигуна L. Напруга навіть при формуванні постійного струму періодичну несинусоїдальну залежність з періодом . Як наслідок струм, який протікає в навантаженні, містить пульсації відносного заданого значення, яке збільшується при збільшенні кута регулювання α. Якщо індуктивність силового ланцюга невелика, пульсації струму значні і при зменшенні його середнього значення струм стає уривчастим. Так в системі НПЧ – АД при m=3 зона уривчастого струму відповідає зміні навантаження двигуна і відповідно, струму статора в межах від холостого ходу до (0,6 – 0,8)І1ном , при m=6 вона знижується і практично проявляється лише на холостому ході.
Корисну роботу електропривода визначає середній момент, тобто перша гармоніка струму двигуна змінного струму. Пульсації струму при потрібному моменті створюють додаткові втрати в опорах якірного ланцюга, викликають додатковий нагрів двигуна, тому повинні обмежуватись на допустимому рівні. Режим уривчастого струму і моменту двигуна для швидкодіючих приводів з преціозним регулюванням швидкості може викликати недопустиму нерівномірність руху двигуна механізма. В цьому та іншому випадку знизити пульсації струму та обмежити уривчастого струму можна шляхом введення згладжую чого реактора або вибором тиристорного перетворювача більшої пульсності. Згладжуючий реактор – простіше і дешевше рішення, але додаються втрати в його обмотці, перетворювач з великим m гарний, але досить дорогий. Якщо маємо справу з проектуванням системи НПЧ – АД, необхідно враховувати, що введення згладжуючого дроселя в кожну фазу двигуна в номінальному режимі може потребувати збільшення номінальної напруги перетворювача та інші аналогічні ефекти.
Для електроприводів середньої і великої потужності головні енергетичні проблеми лежать в сфері взаємодії електропривода з живлячою мережею і в багатьох випадках на вибір системи електропривода виявляють вирішальний вплив її показники якості енергоспоживання. Дискретний фазо – імпульсний принцип управління тиристорними перетворювачами, несинусоїдальність напруги і струму навантаження викликають зсув споживаного із мережі струму і спотворення його форми. Якщо якимось шляхом визначити (наприклад, виміряти) споживану із мережі активну потужність Р, діюче значення споживаного із мережі струму І1 і напруги мережі U1, можна проаналізувати складові енергоспоживання вентильного електропривода.
Повна потужність (максимальна активна потужність, яку споживав би електропривод при даних І1 та U1, якщо б не було зсуву і спотворень):
(4.2.2)
Активна потужність являє собою середнє значення миттєвої потужності за цикл:
(4.2.3)
де u1 і i1 – миттєві значення напруги і струму.
Повна реактивна потужність обумовлена наявністю зсуву у вищих гармоніках струму:
(4.2.4)
Реактивна потужність зсуву:
(4.2.5)
де Т – реактивна потужність спотворення, обумовлена взаємодією джерела ЕРС мережі з вищими гармоніками струму.
На жаль, по відомим значеннях Р, І1 та U1 визначити окремо складові повної реактивної потужності не вдається. Для перетворювача постійного струму (в тому числі і в схемі перетворення частоти з ланкою постійного струму) можна оцінити кут зсуву першої гармоніки струму відносно напруги:
(4.2.6)
де α – кут регулювання, γ – кут комутації вентилів.
Якщо прийняти напругу синусоїдальною, реактивна потужність зсуву визначається лише першою гармонікою струму. При цьому:
(4.2.7)
Звідси:
(4.2.8)
При необхідності по відомій активній потужності можна визначити активну складову основної гармоніки струму:
, (4.2.9)
а далі ефективне значення основної гармоніки струму:
(4.2.10)
При несиметричному навантаженні фаз виникає додаткова складова реактивної потужності – потужність несиметрії, яку вважаючи перетворювач симетричним, не враховуємо.
Розглянуті складові дозволяють дати визначення відповідних коефіцієнтів, які характеризують якість енергоспоживання. Коефіцієнт потужності:
(4.2.11)
Коефіцієнт зсуву характеризує співвідношення між активною потужністю і реактивною потужністю зсуву:
(4.2.12)
Коефіцієнт спотворень:
(4.2.13)
Для розглядаємих симетричних перетворювачів його можна визначити відношенням основної гармоніки струму мережі до його діючого значення:
Кс=І1(1)/І1 (4.2.14)
Коефіцієнт потужності характеризує ефективність енергоспоживання електропривода – ступінь використання повної потужності, яка завантажує мережу, і може бути виражений через складові енергетичні коефіцієнти:
Км=Кз·Кс (4.2.15)
а при наявності несиметрії енергоспоживання по фазах:
Км= Кз·Кс·Кн (4.2.16)
де Кн= - коефіцієнт несиметрії.
Таким чином, вентильні перетворювачі негативно впливають на роботу живильної мережі. При низьких значеннях коефіцієнта потужності електропривод завантажує мережу реактивним струмом основної гармоніки, яка несе активну потужність електроприводу і наповнює мережу циркуляцією струмів вищих гармонік. Ці реактивні струми, протікаючи по опорах живильної мережі викликають додаткові втрати активної потужності, а вищі гармоніки струму при збільшенні числа і потужності вентильних електроприводів здатні викликати недопустимі спотворення напруги мережі, які порушують нормальну роботу інших споживачів. При переході до масового використання в промисловості вентильних електроприводів в сфері електропостачання виникли і інші проблеми, обумовлені вищими гармоніками струму резонансні явища в батареях конденсаторів, які раніше успішно використовувались для компенсації реактивної потужності. В результаті резонанса збільшується вихід із ладу конденсаторів. Це вимагало переходу до використання фільтро – компенсуючи пристроїв, кожний ланцюг яких містить послідовно з'єднані батареї конденсаторів і індуктивності з на лаштуванням даного ланцюга фільтра на певну найбільш суттєву вищу гармоніку струму.
Припустимо, здійснюється вибір системи для потужного електропривода постійного струму із двох варіантів – використовуємо, але застарівши система Г – Д і сучасна система ТП – Д.
З давніх пір до теперішнього часу для збудження генераторів використовують силові реверсивні магнітні підсилювачі – пристрої прості, надійні, але недосконалі. Низький ККД (близько 35%), великі габарити, невисокий коефіцієнт підсилення і ряд інших недоліків не дозволяють реалізувати потрібну швидкодію привода, реальний коефіцієнт форсування процесів збудження генератора αф max ≤ 2. В останні роки вони знімаються з виробництва, тому в замінюваній системі в якості збуджувача генератора вже використовують реверсивний тиристорний перетворювач і обмотку збудження синхронного двигуна, яка раніше підключалась до некерованого джерела, забезпечили для цілей автоматичного регулювання нереверсивним тиристорним збуджувачем. Вибір коефіцієнта форсування і αф≤10 і використання мікроелектроніки в системі управління забезпечує швидкодію і точність системи Г – Д на рівні, що не поступається системі ТП – Д. При цьому система ТП – Д приваблює високим ККД , кращими малогабаритними показниками, кращою технологічністю і меншими потребами в дефіцитній міді і електротехнічній сталі.
Якщо вибір зупинений на системі ТП – Д, можна вжити заходів щодо покращення її техніко – економічної ефективності за рахунок зменшення потрібної потужності фільтро – компенсуючого пристрою. В двохмосовому перетворювачі з природною комутацією зниження споживання реактивної потужності зсуву можна забезпечити шляхом почергового управління мостами. Використавши аналогічний перетворювач з штучною комутацією вентилів, можна практично повністю виключити реактивну потужність зсуву і обмежитись установкою нерегульованого фільтра найбільш суттєвих гармонік струму.
5. Застосування регульованого електроприводу насосних агрегатів
Найбільш перспективним на сьогоднішній день є застосування регулюємого електроприводу. З огляду на нерівномірний характер водоспоживання, для насосних станцій виникла вкрай гостра потреба плавного регулювання їхньої продуктивності (напір і подача).
Традиційно продуктивність насосних станцій у системах водопостачання та водовідведення регулювалася ступінчасто або дроселюванням напірними засувками. Але такі способи регулювання є неекономічними. Крім того, збільшується знос устаткування через часті пуски і зупинки агрегатів; частіше виходять з ладу напірні засувки, внаслідок того, що засувка є запірною арматурою і не призначена для регулювання. Плавне регулювання продуктивності насосних агрегатів може бути забезпечено кількома способами:
Ø застосуванням двигунів постійного струму, число обертів яких змінюють шляхом регулювання напруги живлення;
Ø застосуванням різноманітних муфт ковзання (індукційних, гідравлічних, електромагнітних);
Ø зміною частоти напруги двигуна агрегату (регулюємий електропривод);
Найбільше поширення в даний час має спосіб, при якому в спеціальному тиристорному перетворювачі напруга частотою 50 Гц може бути перетворена у напругу заданої частоти. Як відомо, швидкість обертання електродвигуна прямо пропорційна частоті наруги живлення. Змінюючи число обертів, можливо домогтися зміни подачі Q, напору Н, потужності N у наступній залежності:
; ; (5.1)
де n1 і n0 – число обертів електродвигуна при зміненій (n1) і номінальній (n0) частоті напруг живлення;
Н1 і Н0 – напір насосного агрегату;
Q1 і Q0 –подача насосного агрегату;
N1 і N0 – потужність, споживана агрегатом;
Розглянемо детальніше методи регулювання подачі і напору.
Регулювання шляхом дроселювання зводиться до зменшення потовк води в трубопроводі, що зумовлює додаткові витрати електроенергії, так як насос постійно повинен переборювати противотиск, створений напірною засувкою.
Потужність, споживану насосом, знаходимо по формулі:
(5.2)
де Р – потужність, кВт;
Q – подача, м3/с;
Н – напір, м;
q - щільність;
g - прискорення вільного падіння;
З формули 5. 2 бачимо, що потужність знаходиться в прямій залежності від подачі та напору
На малюнку 5.1 показано зміну характеристик мережі при регулюванні подачі і напору насоса за допомогою дроселювання напірною засувкою, характеристика насоса при цьому залишається незмінною. Точка А є робочою точкою при максимальній подачі, при цьому потрібна потужність дорівнює: 1·1=1. Точка В є робочою точкою при 70% подачі: Q=0,7; Н=1,25. Потрібна потужність дорівнює: 0,7·1,25=0,875.
На малюнку 5.2 показана зміна характеристик при регулюванні продуктивності насоса шляхом керування швидкістю обертання внаслідок встановлення регулюємого електроприводу. При цьому характеристика насосу зсувається паралельно паспортній до початку координат, а характеристика мережі залишається незмінною. Точка А є робочою при максимальній подачі. Потрібна потужність дорівнює: 1·1=1. Точка В є робочою точкою при 70% . Потрібна потужність при цьому: 0,7·0,6=0,42.
На сьогодні вітчизняні виробники випускають наступні типи регулюємого електроприводу:
Для синхронних двигунів з напругою живлення 6 кВ:
Ø тип ПЧСВ, ПЧСН (АТЗТ НПЕК "Елетекс", м. Харків);
Ø СТ 10 (корпорація "Тріол", м. Харків);
Застосування регулюємого електроприводу призводить крім економії електроенергії до додаткових позитивних факторів:
Ø зменшення аварійності на водомережі за рахунок виключення поштовхів та гідро ударів при регулюванні і плавному пуску чи зупинці агрегатів;
Ø збільшення моторесурсу насосних агрегатів і запірної арматури:
Мал. 5.1. Характеристики Q – H насосу та мережі при дроселюванні напірною засувкою
Мал. 5.2. Характеристики Q – H при змінюванні числа обертів насосу за допомогою регулюємого електроприводу
Нами запропоновані наступні заходи:
1. ВНС – 1. Пропонується встановлення одного регулюємого електроприводу типу ПЧСВ на НА 600 В – 1,6/100 А.
Початкові дані:
Потрібний напір - Нп=54 м;
Потрібна продуктивність - Qп=2630 м3/год;
Номінальний напір - Нн=100 м;
Номінальна продуктивність - Qн=5760 м3/год;
Номінальне число обертів - nн=750 об/хв;
Потужність насосного агрегату: Nн=1600 кВт;
Висота підйому води при нульовій продуктивності - Нф=125 м;
Відносна мінімальна подача води - ;
Відносний фіктивний напір - ;
(по розрахунковим кривим [4]).
Потрібне число обертів знаходимо з формули:
(5.3)
об/хв.
Економію електроенергії знаходимо по формулі:
(5.4)
де Nн – номінальна потужність насосного агрегату, кВт;
Т – час роботи насосного агрегату за рік (Т=8760 год);
- параметр, що характеризує відносні втрати електроенергії, викликані перевищенням напору.
Що складає 29% від загального споживання електроенергії ВНС –1 за рік.
2. ВНС – 2. Пропонується встановлення одного регулюємого електроприводу типу ПЧСВ на НА Д6300 – 80.
Потрібний напір - Нп=65 м;
Потрібна продуктивність - Qп=2320 м3/год;
Номінальний напір - Нн=90 м;
Номінальна продуктивність - Qн=6300 м3/год;
Висота підйому води при нульовій продуктивності - Нф=112,5 м;
Потрібне число обертів знаходимо з формули (5.3):
Економію електроенергії знаходимо по формулі (5.4):
Що складає 19% від загального споживання ВНС – 2.
На малюнку 5.3 наведено споживання електроенергії насосними станціями до та після впровадження запропонованих заходів.
Висновки
Ø на водонасосній станції 2 енергоспоживання можливо знизити з 12822,6 до 10439,9, що становить 19%;
Ø на водонасосній станції 2 енергоспоживання можливо знизити з 10935,3 до 8745,3, що становить 20%;
Ø на водонасосній станції 2 енергоспоживання можливо знизити з 7627,4 до 6575, що становить 14%;
Таким чином, загальна економія електроенергії по підприємству внаслідок запропонованих заходів складе 20,56%.
Список використаної літератури
1. Алиев И.И. Справочник по электротехнике и электрооборудованию. – М.: Высшая школа, 2002. – 255 с.
2. ДСТУ 4065 – 2001 "Енергетичний аудит". Загальні технічні вимоги.
3. Ключев В. И, Терехов В. М. Электропривод и автоматизация общепромышленных механизмов. -М.: Энергия, 1980. – 360 с.
4. Леонов Б.С. Энергосбережение и регулируемый електропривод в насосних установках. – М.: ИК "Ягорба" – "Биоинформсервис", 1998. – 180 с.
5. Минаев А. В., Карелин В. Я. Насосы и насосные станции. – М. – Стройиздат., 1998 г.
6. Москаленко В. В. Электрический привод. – М.- Высшая школа, 1991 г.
7. Номенклатурний каталог ХЕМЗ, Харків, 2004 р.
8. Попович М. Г., Ковальчук О.В. Теорія автоматичного керування. – К.: Либідь, 1997. – 544 с.
9. Прайс – лист Сумського заводу "Насосенергомаш", 2004 р.
10. Информационно – аналитический журнал "Энергосбережение", 2002.
Найменування станції
Тип насоса
Продуктивність насоса, м3/год
Напір, м
Тип двигуна
Потужність двигуна, кВт
Напруга живлення, кВ
Число обертів, об/хв
Номінальний струм статора, А
ВНС 1
600 В – 1,6 /100 А
5760
100
ВСДН – 16 – 36 - 8
1600
6
750
276
ВНС2
Д 6300 – 85
6300
90
СДН2 – 11 – 44 – 8
ВНС3
Д 4000 – 90
4000
СДН2 – 16 – 49 – 6
1250
980
200
ВНС4
Д 3200 – 75
3200
75
СД2 – 85/57 – 6у
800
Режим роботи водонасосних станцій за характерну добу (10. 06. 2006)
Години
Найменування об'єкту
Середній тиск на виході за годину, кгс/см2
Подача води за годину, м3
Витрати електроенергії, кВт · год
Фактична питома витрата, кВт · год/м3
Усереднений ККД
0 – 24
ВНС – 1
4,5
2590
1200
0,463
0,27
ВНС – 2
4,4
2310
1410
0,61
0,2
ВНС – 3
9,2
2250
1320
0,586
0,44
0 - 24
ВНС - 4
2,8
2160
0,37
0,21
Страницы: 1, 2