Рефераты. Основные типы диэлектриков, применяемых в производстве конденсаторов






Для определения электрической прочности к образцу, в котором сделаны углубления для того, чтобы получить возможно более однородное распределение поля, через электроды, армированные охранными кольцами, подво­дится постепенно повышающееся напряжение. Подготовка образцов играет весьма важную роль.

В качестве практического предела электрической проч­ности материала удобно принять напряжение начала раз­рядов, выше которого с течением времени начинает разви­ваться пробой. Это напряжение обычно много ниже предельной электрической прочности при кратковременном прило­жении напряжения. При напряжении выше начального разрядного возникает корона и начинается прогрессирующее разрушение материала. Испытание методом определения начального напряжения разрядов имеет то преимущество, что является «неразрушающим» испытанием, поскольку корона вызывает высокочастотные колебания, которые можно наблюдать и измерять, не доводя образец до пробоя.                                                                            Электрическая прочность материала всегда уменьшается, если он работает в условиях высокой температуры или повышенной влажности. Немногие материалы полностью однородны, и обычно пробой связан с прохождением тока утечки вдоль определенного малого участка материала; этот участок нагревается, что приводит к быстрому разрушению или   к  искрению  вдоль   поверхности  и,    следовательно, к обугливанию органического материала. Неорганические материалы, такие, как стекло, керамика и слюда, обычно устойчивы против этой формы пробоя. Очень важно время приложения напряжения. Большинство диэлектриков при кратковременных воздействиях выдерживает значительно более высокие напряжения, чем при длительной работе. С увеличением частоты электрическая прочность падает, особенно при радиочастотах,  в зависимости от коэффициента мощности материала и т. п.


Влияние частоты на диэлектрики и готовые конденсаторы

 

В области очень низких и очень высоких частот наблюдается увеличение потерь, которое практически ограничивает использование конденсатора с любым диэлектриком. При очень низких частотах в диэлектрике становятся заметными различные формы утечки, такие, как ток утечки на постоянном токе и долговременные поляризационные явления, которых не бывает на высоких частотах. При очень высоких частотах некоторые процессы,  связанные с поляризацией   диэлектрика,   не   успевают полностью проявиться и  поэтому вызывают потери.


Типы конденсаторов постоянной емкости

 

Важнейшие характеристики конденсатора определяются его диэлектриком. Поэтому обычно конденсаторы классифицируются по виду диэлектрика: бумага, слюда, керамика и т. д.


Бумажные пропитанные конденсаторы

 

Бумажные пропитанные конденсаторы являются изделиями широкого общего применения. Они изготовляются намоткой из двух или более слоев бумаги (диэлектрика), расположенных между двумя лентами металлической фольги, и затем пропитываются. Эти конденсаторы имеют следующие характеристики (при сравнении со слюдяными конденсаторами):

1)  цена относительно невелика;

2)  коэффициент мощности относительно высок (до 0,01 при 25° С и  1КГц, от 0,005 до 0,04 при —55° С, в зависимости от пропитки);

3)  удельная емкость высока;

4) рабочее напряжение постоянного тока среднее;

5) отклонение емкости от номинала (начальное) большое: возможно ±5%, обычно ±10% или больше.

Максимальное допускаемое рабочее напряжение бумажного пропитанного конденсатора зависит от температуры окружающей среды. Срок жизни конденсатора приблизительно обратно пропорционален  пятой степени рабочего напряжения при температурах до 85° С. В спецификации приведены кривые снижения рабочего напряжения при повышении температуры для каждого варианта конструкции конденсаторов. Величина требуемого снижения напряжения изменяется в зависимости от буквенного обозначения конденсатора, которое указывает на тип про­питки, и от энергии, запасаемой конденсатором при полной зарядке. Для конденсаторов с боль­шим запасом энергии оговариваются другие кривые сниже­ния напряжения в зависимости от температуры.

Изучение надежности работы показало, что для кон­денсаторов в типичных условиях применения наблюдается пропорциональность между количеством выходов из строя и отношением приложенного напряжения к номинальному. Например, в одном из таких опытов за 5000 ч работы выход конденсаторов из строя составил 0,26% для рабочего напряжения, равного 25% Uном и 1,6% для 100% номиналь­ного напряжения.

Для  работы  при  переменном  напряжении  бумажные пропитанные конденсаторы должны быть специально отоб­раны или разработаны, так как размеры корпуса (площадь его поверхности), пропитка и другие конструктивные дан­ные влияют на выбор номинального напряжения. Допускае­мая переменная составляющая для бумажного конденса­тора постоянного напряжения зависит от типа пропиточ­ной массы и от конструкции. Поэтому конденсаторы, по­ставляемые  разными  поставщиками,   чрезвычайно  разно­образны. Постоянная времени бумажных пропитанных конденсаторов комнатной температуре (25° С) составляет от 1500 до 20 000 Мом *мкФ (в зависимости от сорта бумаги и пропиточной массы), но быстро падает при повышении температуры окружающей среды. Для маленьких цилинд­рических герметизированных конденсаторов постоянная   времени   может   уменьшиться   от 20 000 Мом * мкФ при 25° С до 20 Мом *мкФ при 125° С. Это снижение обратно пропорционально величине емкости при ее значениях выше 1 мкФ. Изменение емкости с темпе­ратурой в основном связано с типом пропиточной массы, причем наибольших изменений можно ожидать при низких температурах. Коэффициент мощности при 25° С и 1 КГц изменяется от 0,003 до 0,01, увеличиваясь с частотой. При напряжении 5 В и меньше или в условиях высокочастотной вибрации ударов применяется конструкция конденсаторов с выступающей фольгой, так как конструкция с вкладными  контактами требует приложения достаточно кого напряжения, чтобы переходное сопротивление тактах было малым. Бумажные опрессованные пластмассой конденсаторы хуже герметизированных типов в металлических корпусах. В условиях повышенной  влажности  сопротивление  изоляции  опрессованных конденсаторов много ниже и в процессе старения заметно ухудшается. В тех случаях, когда требуется малая емкость на землю удобно применять конденсаторы в герметизированных керамических корпусах. Хотя конденсаторы этой конструкции после 1000 ч испытаний на срок службы имеют лучшую стабильность емкости, повышенное сопротивление изоляции и меньшее изменение угла потерь, чем аналогич­ные конденсаторы в металлических корпусах,  применять их следует с осторожностью, так как у этой конструкции при термических ударах иногда нарушается герметичность. Испытание образцов бумажных конденсаторов на хранение в течение 2 лет показало, что при температуре 50 ± 2° С и  относительной  влажности 90—95% происходит  прогрессирующее снижение сопро­тивления изоляции, ухудшается угол потерь и электриче­ская прочность конденсаторов и снижается их напряжение перекрытия. При такой же или более низкой температуре в  сочетании   с   пониженной   относительной   влажностью характеристики также ухудшаются, но медленнее. Во всех вариантах климатических условий испытанные конденса­торы с аксиальными выводами показали наименьшее изменение характеристик.

По своему применению бумажные пропитанные конден­саторы подразделяются на следующие группы: блокиро­вочные, буферные, шунтирующие, конденсаторы связи и фильтровые.


Металлобумажные конденсаторы

 

Конструкция металлобумажных конденсаторов такова, что воздушные зазоры между бумагой и обкладками, существующие в обычных бумажных фольговых конденсаторах, полностью  исключаются. Эти конденсаторы были разработаны и освоены производстве в конце 40-х годов. В металлобумажном конденсаторе одна сторона бумаги металлизируется перед намоткой. При номинальном напряжении до 600 В такие конденсаторы имеют меньший размер, чем бумажные пропитанные конденсаторы того же номинала. Это преимущество особенно заметно при номинальных напряжениях до 100 В постоянного тока и емкостях выше 0,01 мкФ, когда уменьшение объема может достигать 75%. |

Кроме того, если при воздействии напряжения происходят пробой и короткое замыкание обкладок, то в металлобумажных конденсаторах происходит процесс самовосстановления электрической прочности. При пробое бумаги очень тонкий слой металла быстро испаряется вокруг места пробоя, предотвращая образование постоянного короткого замыкания. Максимальное напряжение, при котором еще сохраняется самовосстановление, определяет величину испытательного напряжения. Максимальное напряжение, которое может быть кратковременно приложено к выводам конденсатора без его разрушения, называется напряжением искрения. Это максимальное напряжение следует прикладывать не более чем на несколько секунд, в противном случае непрерывное искрение быстро разрушит конденсатор.

Постоянная времени металлобумажных конденсаторов при 25° С составляет от 250 до 2000 Мом *мкФ, т. е. обычно в 6—10 раз меньше, чем у бумажных фольговых конденсаторов, хотя некоторые вновь разработанные типы и срав­нимы с фольговыми. Металлобумажные   конденсаторы   нельзя применять для емкостной связи контуров, но можно использовать в цепях развязки или сглаживания, когда основным требованием является малая величина полного сопротивле­ния.

На  переменном токе металлобумажные конденсаторы следует использовать с осторожностью. Номинальное напряжение постоянного тока не может быть просто пересчи­тано на величину напряжения переменного тока. Коэффициент пересчета, принятый для конденсатора какого-либо определенного номинала, может не подойти для конденсаторов с другими размерами, другим номинальным напряжением или иным типом конструкции. Допускаемые величины напряжения переменного тока для металлобумажных и бумажных фольговых конденсаторов различны в связи с плохой теплопроводностью металлизированных секций. Амплитудное напряжение при частоте 60 или 400 Гц никогда не должно превышать величину номинального напряжения постоянного тока. Это ограничивает величину переменного напряжения при малых емкостях, но при емкости выше 10 мкФ надо уже учитывать опасность разогрева конденсатора. В этом случае предельное номинальное напряжение можно повысить, улучшив отвод тепла от пакета секций к корпусу конденсатора.

Металлобумажные конденсаторы нельзя использовать в тех случаях, когда происходят частые перенапряжения, так как при этом могут снизиться емкость и сопротивление изоляции и возрасти тангенс угла потерь. Если два конден­сатора соединены параллельно, то обычно к каждому из них последовательно подключается сопротивление 1 КОм для подавления перенапряжения, которое могло бы возник­нуть при пробое одного из конденсаторов и повредить второй.

Коэффициент мощности металлобумажных конденсато­ров при 25° С и частоте 1 КГц находится в пределах от 0,005 до 0,015.


Слюдяные конденсаторы

 

Слюдяные конденсаторы изготовляют, набирая их в виде стопки из очень тонких пластинок слюды, переложенных слоями фольги, или нанося слой серебра непосредственно на поверхность слюдяных пластинок для уменьшения колебания емкости от термического расширения за счет удаления воздуха из зазоров между диэлектриком и обкладками. Стопку затем сжимают, присоединяют выводы и конденсатор опрессовывают пластмассой или покрывают слоем компаунда для защиты от механических повреждений и воздействия окружающей среды.

Конденсаторы имеют следующие характеристики:

1) цена более высокая, чем у бумажных конденсаторов;

2) коэффициент мощности при 25° С и 1 КГц равен 0,001, при 1 МГц уменьшается до 0,0002;

3)  добротность Q высокая, обычно порядка 2500 при емкости от 100 до 1000 пФ при 1 МГц; при более высоких и более низких значениях емкости уменьшается;                                                

4)  удельная емкость низкая по сравнению с бумаж­ными конденсаторами;

5)  рабочее  напряжение  постоянного  тока:   возможно получение высоких номинальных напряжений;

6)  отклонение емкости от номинала  (первоначальное) небольшое, до ±0,25%.

Важнейшими характеристиками слюдяных конденсато­ров являются малый угол потерь (в широком диапазоне частот),   высокое  рабочее  напряжение,   малое  изменение емкости  с температурой  и   при  старении.   Стабильность конденсаторов из  серебрёной  слюды  выше стабильности конденсаторов фольгового типа, которые после 10 лет работы при комнатных условиях давали изменение емкости ±3% (даже в случае образцов хорошего качества). Прецизионные слюдяные конденсаторы, используемые в качестве вторичных образцов емкости, были изготовлены с допуском менее 0,01% при значениях емкости более 1 мкФ. Их герметизируют для защиты от влияния окружающей среды на стабильность емкости. Конденсаторы этого типа имеют высокое постоянство емкости во времени: после 10 000 ч испытания при комнатной температуре емкость конденса­торов с номиналом 10 000 пФ осталась неизменной с точ­ностью ±0,2 пФ. Температурный коэффициент мал, и величина его зависит: от метода стяжки стопки пластин и типа обжимок; от месторождения и качества обработки слюдам от типа конструкции конденсатора (фольговый тип или из серебрёной слюды).

Слюдяные  серебрёные  конденсаторы  имеют лучшую температурную стабильность, чем конденсаторы с обклад­ками из фольги, поэтому группы повышенного качества обычно изготовляются из серебрёной слюды. Оба типа показывают небольшое необратимое изменение ем­кости после температурных циклов, но это явление сильнее выражено у конденсаторов с фольговыми обкладками. У большинства типов слюдяных конденсаторов зависимость изменения емкости от температуры несколько отклоняется от линейной.  Средние значения температурных коэффициентов для различных образцов одной и той же партии колеблются в относительно широких пределах.  Хорошие температурные коэффициенты  при стабильности емкости ±0,05% могут быть полу­чены у конденсаторов, которые для герметизации окунают компаунд и применяют теперь в транзисторной технике. Сопротивление изоляции слюдяных конденсаторов, так же как и других типов, уменьшается с повышением температуры. В настоящее время слюдяные конденсаторы изготовляются для  работы при номинальном   напряжении   и   температуре   окружающей среды 125 и 150 °С.

Конденсаторы из серебрёной слюды допускают мень­шую нагрузку током, чем конденсаторы из фольги, поэтому они менее пригодны для работы при больших токах. Это ограничивает их применение при радиочастотах и в им­пульсных схемах.  Испытание конденсаторов показало, что при хранении в условиях относительной влажности 40—50% и температуры 25±2° или 50 ± 2° С в течение 18 месяцев их характеристики изме­няются незначительно. Однако после хранения в течение 6   месяцев   при   50 ± 2° С   и   относительной   влажности 90—95% некоторые конденсаторы пришли в полную не­годность. При проверке электрической прочности и сопро­тивления изоляции через все образцы протекал чрезмерно большой ток, что практически соответствовало короткому замыканию обкладок.

Слюдяные конденсаторы выпускают для ряда технических применений: блокировочные, шунтирующие, высокочастотные,   буферные,   конденсаторы   связи,   фильтровые (высокочастотные) и для фиксированной настройки (высокое напряжение, большой ток).


«Пуговичные»  слюдяные конденсаторы

 

Специальный тип  слюдяных  конденсаторов,  называемый «пуговичным», имеет характеристики, подобные характеристикам опрессованных типов конденсаторов, описанных выше. Выпускаются два типа таких конденсаторов: негерметизированный для работы при температуре до 85° С с относительно низким сопротивлением изоляции в условиях повышенной влажности и герметизированный для работы при температурах до 125° С с высоким сопротивлением изоляции при всех   климатических   условиях.   Эти   конденсаторы  пригодны для работы при частотах до 500 КГц в цепях шунти­рования, емкостной связи и настройки.


Керамические конденсаторы

 

Керамические конденсаторы изготовляются из трех основных классов керамики: 1) с низкой диэлектрической проницаемостью и малыми потерями; 2) со средней вели­чиной диэлектрической проницаемости и повышенной тем­пературной стабильностью; 3) с высокой диэлектрической проницаемостью.

Конденсаторы первого класса обычно  изготовляют из стеатита или других подобных материалов. Диэлектриче­ская проницаемость стеатита примерно равна 8,0; другие материалы этого типа могут иметь ε = 6÷15. Эти диэлектрики обладают превосходными характеристиками при стогах свыше 50 КГц. Коэффициент мощности относительно мал (0,001) и приближается к уровню потерь слюды. Тем­пературный коэффициент ε лежит   в   пределах +80 и +120*10-6 град-1. Температурный коэффициент емкости конденсаторов отдельных партий различается меньше, чем у конденсаторов с любыми другими диэлектриками, исключая стекло и вакуум. Конденсаторы работают при сравнительно высоких напряжениях, порядка 500 В (в зависимости от размеров), в интервале температур от   -55 примерно до +150 °С.

Ко второму классу относятся керамические конденсаторы, изготовленные из керамики со средней диэлектрической проницаемостью ε = 6 ÷ 110. В основном это термокомпенсирующие  конденсаторы.   Температурный  коэффи­циент емкости этих конденсаторов изменяется в пределах от + 100 до  -800 * 10-6 град-1 в зависимости от содер­жания двуокиси титана в составе керамики. Соответственно изменяется и величина ε. Коэффициент мощности мал и при частоте 1 МГц находится в пределах от 0,04 до 0,4%.  Разброс значений   температурного коэффициента емкости (ТКЕ) от указанных номиналов приводит к необходимости ого­ворить допускаемое его отклонение: ΔТКЕ. Кривая темпе­ратурного изменения емкости нелинейная, поэтому номи­нальное значение ТКЕ по изображается наклоном отрезка кривой ΔС, определяемой интервалом температур от 25 до 85° С. Кривая ТКЕ = f (t) не является прямой, проходящей через значение t = 25° С. Допуски указываются как   плюсовые,   так и минусовые для того, чтобы можно было вычислить максимальное и мини­мальное отклонения ТКЕ от номинала.  Необходимо еще раз подчеркнуть, что все цифры лишь приблизительные и действительны только между 25 и 85° С.  При использовании этих конденсаторов для термокомпенсации  надо выбирать  их расположение в аппаратуре с таким расчетом, чтобы кривая зависимости температуры конденсатора от времени прогрева была такой же, как у той части схемы, для которой осуществляется термокомпенсация.

Термокомпенсирующие керамические конденсаторы используют для следующих целей: для емкостной связи, для фиксированной настройки (при высоких частотах), для температурной компенсации, в качестве шунтирующих.

Конденсаторы третьего класса из керамики с высокой диэлектрической проницаемостью имеют большую удель­ную емкость. Однако их емкость и коэффициент емкости резко изменяются с температурой; для обеих характери­стик это изменение происходит нелинейно и неполностью обратимо.   Например,   у   конденсатора   с  диэлектриком, имеющим ε = 1200, наблюдается резко выраженный максимум  емкости   при  температуре   110° С  (точка   Кюри). Коэффициент мощности проходит через минимум в области гемператур 20—40° С. У всех керамических конденсаторов с высокой ε наблюдаются подобные максимумы и минимумы при различных температурах. Во всех случаях чем выше диэлектрическая   проницаемость  диэлектрика,   тем  более резко зависит емкость конденсатора от температуры. Помимо   изменений   с  температурой,   емкость   уменьшается также при воздействии постоянного напряжения, особенно при прохождении через температурный максимум.  Если при температуре 25 С емкость уменьшается на 10—20%, то в точке Кюри  она может снизиться на 50%. Рабочее напряжение ниже, чем для конденсаторов из керамики с низкой диэлектрической проницаемостью. Для конденсаторов данного типа  свойственно явление гистерезиса, поэтому они пригодны для работы при низком переменном напряжении. В результате ров данного класса уменьшается, снижение емкости может достигать 25% за первые 1000 ч старения Эффект старения обычно имеет асимптотический характер и ослабевает со временем. Свойства конденсаторов из керамики с высокой диэлектрической проницаемостью настолько резко изменяются под воздействием температуры, напряжение, частоты и при испытании на старение, что трудно указать средние значения параметров.  применяются

для следующих целей: в качестве шунтирующих (на радио­частоте); для емкостной связи (в промежуточных контурах, когда нужна большая емкость); в качестве фильтровых.


Стеклянные конденсаторы

 

Конденсаторы с диэлектриком из стекла были разра­ботаны для замены слюдяных конденсаторов. Секции стеклянных конденсаторов набирают из чередующихся слоев стеклянной ленты в виде тонкой пленки толщиной 12,7—25 мк и алюминиевой фольги и спекают в монолитный блок. Стекло может быть получено очень однородным. Так как ε стекла выше, чем у слюды, то объем стеклопленочных конденсаторов меньше объема слюдяных той же емкости. Сопротивление изоляции при 25°С обычно порядка 150000 МОм. Стеклянные конденсаторы имеют  положительный  температурный   коэффициент,  по­рядка 140 10-6 град-1. Они весьма стабильны, их емкость и добротность совершенно постоянны. При 1 МГц и 25° С добротность конденсаторов с емкостью от 10 до 1000 пФ обычно   не   менее  2000.

Поскольку корпус конденсатора изготовляется из того же материала, что и диэлектрик между обкладками, легко получить высокое значение добротности при малых ем­костях; малая индуктивность выводов, непосредственно присоединенных к обкладкам, дает высокое значение Q и при больших емкостях.

Конденсаторы рассчитаны на работу при температуре окружающей среды до 85 и 125° С (при соответствующем снижении номинального напряжения). Стеклянные конденсаторы используют для   следующих   целей:   для   блокировки,   на стройки, для емкостной связи и в качестве шунтирующих.


Стеклоэмалевые конденсаторы

 

Стеклоэмалевые конденсаторы изготовляют методом пыления или прессования слоев стеклоэмали и серебря пасты до получения нужного числа слоев диэлектрика обкладок. Затем заготовку спекают для того, чтобы образовалась монолитная остеклованная структура.

Стеклоэмалевые конденсаторы имеют следующие характеристики:                                                                  

1)  превосходные высокочастотные характеристики (коэффициент мощности снижается с частотой при ее изменении от 1 КГц до 1 МГц, после чего увеличивается с ростом частоты вплоть до 100 МГц);

2)  в диапазоне температур от -55 до +200° С общее изменение емкости составляет 5%;

3) температурный  коэффициент  емкости  равен   115±25*10-6 град-1;

4) способность  работать  при соответствующем сниже­нии напряжения при температуре 200° С;                         I

5) стабильность емкости во времени высока, необрати­мое изменение емкости менее 0,08%;

6) очень высокое Ris при 25° С, выше 106 МОм;

7)  хорошая добротность; при 25° С и 1 МГц добротность Q = 1800 ÷ 3000;

8)  тангенс угла диэлектрических потерь при 25° С приблизительно равен 0,001; при 200° С достигает величины порядка 0,01;

9)  постоянная времени при 100° С выше 10 МОм*мкФ. Как и в случае стеклянных конденсаторов, корпус из­готовляют из того же материала, который используется в качестве диэлектрика между обкладками; это устраняет опасность появления короны у краев обкладок при высоком напряжении.

Стеклоэмалевые конденсаторы применяют в тех же це­пях, что и стеклянные конденсаторы.


Пленочные конденсаторы

 

Пленочными конденсаторами называются конденсаторы с диэлектриком из синтетических пленок, например из полистирола, полиэтилентерефталата (майлар), политетра­фторэтилена (тефлон), которые используются или самостоятельно, или в сочетании с другим диэлектриком. Полистирольные конденсаторы изготовляют уже в течение многих лет. Они имеют следующие характеристики:

1)  постоянная времени очень высока: при комнатной Температуре (+25°С) превышает 106 МОм* мкФ, при повышении температуры до +65° С снижается незначительно;

2)  диапазон рабочих температур от -55 до 65° С (некоторые типы конденсаторов малой емкости могут работать при температуре до +85° С);

3)  коэффициент мощности при 25° С порядка 0,0005 (сравним с cosφ для слюдяных конденсаторов) и не зависит от частоты;

4)  диэлектрическая абсорбция низкая; это допускает использование конденсаторов в цепях с большой постоян­ной времени;

5)  температурный коэффициент емкости отрицательный, может достигать  минус 200 * 10-6 град-1 в зависимости от кон­струкции конденсатора;

6)  необратимое изменение емкости во времени меньше 0,2%;

7)  добротность Q выше 4000.

Полистирольные конденсаторы выпускают для следую­щих областей применения: для цепей точной выдержки времени, для интегрирующих устройств, для настроенных контуров с высокой добротностью и в качестве образцов емкости.

Полиэтилентерефталат (майлар) — перспективный ди­электрик и в будущем может в значительной мере заменить собой бумагу. Однако для его свойств характерна опреде­ленная температурная и частотная зависимость. Верхний предел его рабочей температуры выше, чем у бумаги, и достигает 150° С. Однослойные секции из этой пленки про­питываются полистиролом, минеральным маслом и другими подобными веществами для заполнения сквозных отверстий; могут быть также намотаны секции с двумя (и более) слоями пленки, как в случае бумажных конденсаторов.

Пленка отличается хорошей механической прочностью и может легко металлизироваться методом испарения в вакууме. Так как эта пленка чувствительна к влаге, то конденсаторы необходимо герметизировать.

Конденсаторы с диэлектриком из пленки майлар имеют следующие характеристики:

1)  постоянная времени при 25° С обычно вдвое выше, чем у бумажных конденсаторов (при 25° С выше 50 000 МОм*мкФ, при 150° С обычно выше 10 Мом*мкФ);

2)  рабочая температура до 150° С, обычно при условии значительного снижения номинального напряжения;

3)  тангенс угла потерь не более 0,01 при 85° С и не более 0,016 при  160° С;

4)  диэлектрическая абсорбция небольшая, меньше, чем у слюдяных конденсаторов, если не применена пропитка кремний органической жидкостью;

5) изменение емкости не более ±4% при изменении температуры от —55 до +85° С, не более ±20% при из­менении температуры от —55 до +150° С.

Конденсаторы с диэлектриком из полиэтилентерефталата используют в тех же цепях и устройствах, что и обыч­ные бумажные конденсаторы, когда требуется более высо­кое сопротивление изоляции, более высокая рабочая тем­пература и меньшая абсорбция, чем для бумажного кон­денсатора.

Конденсаторы с диэлектриком из пленки политетрафтор­этилена (тефлон) способны работать при еще более высокой температуре (до 200°С), однако трудно изготовить пленку толщиной 6,3 и 12,7 мк с требуемыми характеристиками.

Конденсаторы этого типа имеют следующие характе­ристики:

1)  постоянная времени высокая; при 25° С она выше 106 МОм*мкФ, при 200° С обычно выше 200 Мом*мкФ;

2)  диапазон рабочих температур от —55 до +200° С;

3)  диэлектрическая абсорбция малая, такая же, как у полистирола;

4)  температурный коэффициент емкости отрицатель­ный, порядка —200*10-6 град-1;

5)  тангенс угла потерь низкий, менее 0,0005 при 25° С;

6)  отклонение емкости от номинала до ±1%;

7)  добротность выше 5000;

8)  изменение емкости в диапазоне температур от —55 до +200° С менее ±4%.

В связи с дороговизной конденсаторы с диэлектриком из пленки этого типа используются только там, где необходимы высокая рабочая температура, низкий угол потерь, высокая добротность, очень высокое сопротивление изоляции и малое изменение емкости с температурой.


Электролитические конденсаторы

 

Выдающаяся  характеристика электролитических  конденсаторов — очень высокая удельная емкость, т. е. емкость, рассчитанная на единицу объема. Это преимущество особенно заметно при малых рабочих напряжениях. Электролитические конденсаторы можно изготовлять несколь­кими способами. Существенным признаком является наличие двух электродов, погруженных в электролит, с электрохимически полученной пленкой окиси,  которая работает в качестве диэлектрика на одном или на обоих электродах. 1. Полярный алюминиевый электролитический конден­сатор — наиболее старый тип электролитического конден­сатора. Конденсаторы наматываются,   подобно бумажным, из лент глад­кой или травленой фоль­ги. На поверхность одной из   лент,   анодной   или положительной, нанесен слой оксида. Травление фольги (или шоопирование ткани, что является другим вариантом конструкции)    увеличивает активную   поверхность, в результате чего дости­гается значительное уве­личение емкости конден­сатора.

При длительном хра­нении электролитиче­ские конденсаторы необ­ходимо       периодически подформовывать.   Через 6 месяцев хранения при комнатной температуре, если ток утечки конденсаторов велик, оксидная пленка  должна быть вновь подформована.

Электрические свойства электролитических алюминие­вых конденсаторов изменяются в широких пределах в за­висимости от условий эксплуатации. Некоторые примеры приведены ниже.

а)  Емкость. При повышении температуры от 25 до 85° С емкость несколько возрастает (на 10%) и уменьшается при снижении температуры до —20° С. При более низких температурах емкость быстро падает. Емкость также не­сколько снижается с повышением частоты: в интервале частот от 60 Гц до 10 КГц она снижается примерно на 10%.

б)  Коэффициент мощности. При 120 Гц и 25° С cosφ = = 0,02÷0,35; при 85° С он обычно незначительно умень­шается и резко возрастает при —40° С. Значительное уве­личение cosφ наблюдается также при возрастании ча­стоты. Вместо того чтобы характеризовать потери значе­нием cosφ или tgδ, в обычной практике используют вели­чину rs последовательного сопротивления, эквивалентного потерям. Как cosφ, так tgδ зависят и от реактивной, и от активной составляющих сопротивления конденсатора. Эк­вивалентное последовательное сопротивление характери­зует только активную часть полного сопротивления, а величина его определяется потерями в металлических ча­стях и удельным сопротивлением электролита. Обычно величина rs определяется главным образом проводимостью электролита и в меньшей степени сопротивлением метал­лических электродов, контактов и выводов.

в)   Ток утечки. Сопротивление изоляции электролити­ческих конденсаторов очень мало, а потому обычно вместо него рассматривается величина тока утечки конденсатора. Ток утечки изменяется с температурой: он очень мал при -40 ° С, но при 85° С почти в 3 раза превышает свои значение  при 25° C. Ток утечки увеличивается также с увеличением напряжения на выводах конденсатора; в первый момент после приложения напряжения ток очень высок но быстро спадает со временем. Через 1—5 мин величина тока утечки стабилизируется. Конденсаторы с различными номинальными данными сравниваются по величине отно­шения тока утечки к произведению из емкости на напряже­ние. Этот метод оценки до некоторой степени срав­ним с применением величины постоянной времени для оценки качества бумажных и пленочных конденсато­ров.

г) Полное сопротивление конденсатора. Увеличение пол­ного сопротивления Z наблюдается при понижении темпе­ратуры: при —40° С оно в 5—7 раз больше, чем при +25° С. При более низких температурах рост Z еще больше. При увеличении частоты Z заметно снижается; так, например, если производить измерение при температуре 85° С, то полное сопротивление конденсатора уменьшается с 20 Ом при частоте 120 Гц до 0,3 Ом при 10 КГц.

Оксидный слой в электролитическом конденсаторе фор­муется при номинальном напряжении, поэтому снижение рабочего напряжения при повышении температуры дает мало выгоды. Для обеспечения максимальной надежности и длительного срока службы допускаемое рабочее на­пряжение конденсатора должно быть не более 80% но­минального напряжения: Тогда при воздействии перена­пряжений не будет превышен номинальный предел. Пере­напряжения, равные по величине номинальному напряжению, можно прикладывать к конденсатору не более чем на 30 сек с интервалами 10 мин.

Оксидная пленка «стремится переформоваться» при лю­бом напряжении, которое поддерживается в течение неко­торого времени постоянным, поэтому необходимо избегать пользования электролитических конденсаторов в схемах, где постоянное напряжение может значительно изменяться на длительное время в процессе работы.

В большинстве электролитических конденсаторов с металлическим корпусом электролит не может быть полностью изолирован от корпуса. Между отрицательной обкладкой и корпусом (земля)  имеется сопротивление неопределенной величины. В устройствах, где отрицательная обкладка конденсатора не должна быть при потенциале земли, конденсатор помещают в изоляционную трубку.

 

 

 

Список использованной литературы

1)     Гусев В. Н., Смирнов В. Ф. Электрические конденсаторы постоянной емкости.- М.: Советское радио, 1968.

2)     Дж. В. А. Дэммер, Г.М. Норденберг. Конденсаторы постоянной и переменной емкости. М.-Л., Госэнергоиздат, 1963.


Страницы: 1, 2



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.