Напряжение смещения Uб0 часто выбирается нулевым. При этом угол отсечки будет близок к 80… 90°, при котором соотношение между Pвых1, ηэ, Kр близко к оптимальному. Кроме того, в этом случае отсутствует цепь смещения, что упрощает схему усилителя и не требует затрат мощности на осуществление смещения. В отношении Sгр надо иметь в виду, что перед расчетом ее следует уточнить, используя условие
(для схемы ОЭ — 0,7; для схемы ОБ — 0,8).
При этом Pвых1 и Uк0 берутся для выбранного транзистора. При невыполнении этого условия можно несколько увеличить Sгр (на 10… 15%).
Предлагаемая методика расчета исходит не из Pвых1, а из мощности Рг, развиваемой эквивалентным генератором тока iг. Мощность Рг в схеме ОЭ следует взять на 10‑20% меньше, чем требуемая Pвых1, которая имеет приращение из-за прямого прохождения части входной мощности. На f>frp в схеме ОБ Рг берется на 25... 50% выше Pвых1, на f<frp эта доля меньше.
К начальным параметрам расчета относится температура корпуса транзистора. Ее можно задать как Тк=Тс+(10… 20) °С с учетом перегрева радиатора относительно окружающей среды.
Если после проведения расчета на значения , f ' в типовом режиме Kр отличается от справочного значения не более, чем на , то можно считать, что параметры эквивалентной схемы, принятые в расчете, оценены правильно. Если модуль пикового напряжения , то это означает, что значение емкости Сэ занижено. Для удобства расчета исходные данные целесообразно свести в таблицу в следующем порядке:
Pвых1, Bт; Pг, Bт; f, МГц; fгр, МГц; Uкэ доп, В; Uкб доп, В; Uбэ доп, В; U', В; Uв0, В; Uк0, В; Sгр, А/В; Rпк, °С/Вт; Тп, °С; Тк, °С; h21э; Cк, пФ; Cкп, пФ; Cэ, пФ; rб, Ом; rэ, Ом; rк, Ом; Lб, нГн; Lк, нГн; Lэ, нГн; Pк доп, Вт.
Приводимый ниже порядок расчета граничного режима работы при Uв0=0 может быть использован для включения транзистора как по схеме ОЭ, так и по схеме ОБ. Там, где формулы расчета для схем ОЭ и ОБ отличаются, будет сделана пометка «ОЭ» или «ОБ». Все расчеты проводятся в системе СИ.
1. Напряженность ξгр режима:
.
2. Амплитуда напряжения и тока первой гармоники эквивалентного генератора:
3. Пиковое напряжение на коллекторе:
Uк пик = Uк0+Uг1<Uкэ доп.
При невыполнении неравенства следует изменить режим или выбрать другой тип транзистора.
4. Параметры транзистора:
; ; .
5. Находим значения параметров А и В:
, , где .
С помощью графика A(γ1) на рис. 4 определяем коэффициент разложения γ1(θ). Затем по табл. 3.1. [1] для найденного γ1(θ) определяем значения, θ, cos(θ) и коэффициент формы g1(θ).
6. Пиковое обратное напряжение на эмиттере
Рис. 4. Зависимость параметра A от коэффициента разложения симметричного косинусоидального импульса γ1(θ)
7. , где .
8. .
9. .
10. .
11. .
12. .
13. .
14. .
15. .
16. .
17. .
18. .
19. .
20. .
21. .
22. .
23. Амплитуда напряжения на нагрузке и входное сопротивление транзистора для первой гармоники тока:
;
24. Мощность возбуждения и мощность, отдаваемая в нагрузку:
для схемы ОЭ ;
Если Pвых1 будет отличаться от заданной более чем на ±20%, расчет следует провести заново, скорректировав значение Pг.
25. Постоянная составляющая коллекторного тока, мощность, потребляемая от источника питания, и электронный КПД соответственно:
26. Коэффициент усиления по мощности, мощность, рассеиваемая транзистором и допустимая мощность рассеяния при данной температуре корпуса транзистора:
Можно принять значение Тп max=Tп, где Tп — допустимое значение, взятое из справочных данных.
Следует убедиться, что .
27. Сопротивление эквивалентной нагрузки на внешних выводах транзистора
, где для схемы ОЭ.
Данный расчет исходил из нулевого смещения на входном электроде транзистора. В ряде случаев этот режим может быть не оптимальным и желательно вести расчет на заданный угол отсечки (например в усилителе ОБ для стабилизации режима уменьшают угол отсечки). Тогда, выбрав угол отсечки θ, по табл. 3.1. [1] находят коэффициент α1(θ) и определяют
Затем в п. 5 находят напряжение смещения Uв0 из соотношения
,
где берут (для выбранного θ) также из табл. 3.1.
Если напряжение смещения должно быть запирающим, то можно применить автосмещение, включив сопротивление , заблокированное конденсатором. При отпирающем смещении требуется дополнительный источник напряжения.
В промежуточных каскадах радиопередающих устройств СВЧ применяют умножители частоты о выходной мощностью до сотен милливатт. Такие СВЧ-умножители являются уже мощными. Умножение частоты в них достигается выделением нужной n-й гармоники из импульса коллекторного тока. При расчете режима транзистора, работающего на частотах 108... 109 Гц (сотни МГц), используют кусочно-линейную модель транзистора. При этом дополнительно учитывают индуктивности выводов транзистора, емкость закрытого эмиттерного перехода и потери в материале коллектора. Предполагают, что транзистор включен по схеме с общей базой (ОБ) и возбуждается от генератора гармонического тока. Схема ОБ обеспечивает лучшие энергетические параметры мощного умножителя СВЧ, чем схема с общим эмиттером (ОЭ). В схеме ОЭ за счет обратной связи через емкость Ск импульс коллекторного тока деформируется и имеет малые коэффициент формы gn(θ), а следовательно, и КПД, и мощность в нагрузке.
Выходная мощность умножителя ограничена несколькими факторами. К ним относятся предельно допустимые значения обратного напряжения на эмиттерном переходе Uбэ доп и мощности рассеяния, а также критический коллекторный ток Iкр1.
При выборе угла отсечки надо учитывать следующее. Пиковое обратное напряжение Uбэ пик увеличивается при уменьшении угла отсечки θ, что может ограничить мощность, отдаваемую умножителем частоты. При больших углах отсечки уменьшается КПД и растет рассеиваемая мощность Рк, что может привести к нереализуемости режима транзистора. Если при оптимизации мощности умножителя частоты опираться только на ограничения по коллекторному току, считая максимальный iк max=Iкр, то оптимальным углом отсечки при n=2 оказывается θ=60°, а при n=3 — θ=40°. При этих углах отсечки КПД будет достаточно высоким, но надо не допустить превышения Uбэ доп. Поэтому часто угол отсечки и для n=2, и n=3 выбирают равным θ=60°.
Расчет режима транзистора ведут на заданную выходную мощность транзистора Pвых n на рабочей частоте nf, определенную по выходной мощности умножителя Pвых n и КПД его выходной согласующей цепи hк вых: Рвых n=Рвых/hк вых.
Для расчета используем методику, которая имеет в своей основе следующие допущения:
интервал рабочих частот соответствует неравенствам: , ;
транзистор возбуждается от генератора гармонического тока;
крутизна по переходу Sп считается вещественной;
напряжение на коллекторе — гармоническое;
схема включения транзистора — ОБ;
влиянием индуктивности общего вывода транзистора Lб пренебрегают.
Исходя из заданных Pвых n и nf по справочникам выбирается транзистор с учетом выполнения условий и . Вследствие больших потерь в материале коллектора на верхних частотах транзистора целесообразно выбирать транзистор с запасом по выходной мощности Pвых n примерно в 2,0… 2,5 раза. Параметры выбранного транзистора рекомендуется свести в таблицу в следующем порядке:
, Вт; , МГц; , В; Uкэ доп, В; Uбэ доп, В; , В; Iкр, А; Tп, °С; Sгр, А/В; fгр, МГц; Ск, пФ; rб, Ом; rэ, Ом; rк, Ом; Lб, нГн; Lэ, нГн; Lк, нГн.
Напряжение питания Uк0 принимается равным или близким к , в типовом режиме транзистора. Угол отсечки целесообразно выбрать для n=2 и n=3 θ=60°. По табл. 3.1 [1] определяют для выбранного θ коэффициенты α0, α1, α2, γ1, γn.
Расчет ведут в следующем порядке (режим работы принимают граничным).
1. Сопротивление потерь коллектора в параллельном эквиваленте:
2. Напряженность граничного режима
где .
3. Амплитуда напряжения и тока n-й гармоники, приведенные к эквивалентному генератору:
; .
4. Сопротивление коллекторной нагрузки:
5. Амплитуда n-й гармоники, высота импульса тока эквивалентного генератора, постоянная составляющая коллекторного тока соответственно:
Страницы: 1, 2, 3