| ||||||||
тип |
Pном, Вт |
Диап. F(Гц) |
Среднее Звуковое Давление |
Полное Сопротивление Звуковой катушки, Ом |
Габариты мм |
Вес, гр |
||
Fн |
Fв |
н/м² |
бар |
|||||
0,2ГД-1 |
0,200 |
300 |
10000 |
0,18 |
1,8 |
6±0,6 |
60*25 |
50 |
Выбор типа схемы и транзисторов для выходного каскада:
В качестве оконечных каскадов усилителей низкой частоты можно использовать как однотактные, так и двухтактные схемы. Схема выходного каскада определяется назначением усилителя и требованиями, предъявляемыми, к нему. Так как у моего усилителя Рвых=0,150Вт, то я выбираю двухтактный каскад в режиме класса АВ на маломощных транзисторах.
Выбор транзисторов производится, исходя из следующих соображений:
1. предельно допустимая мощность рассеяния на один транзистор Ркмакс должна превышать рассеиваемую на коллекторе мощность Рк, которую можно вычислить по формуле:
Рк=0,4*Рн’/ ηунч *ξ², где
Рн’=Рн/2-номинальная мощность, заданная по условию, приходящаяся на один транзистор.
Рк-мощность рассеиваемая на коллекторе транзистора.
ηунч-КПД выходного каскада =1
ξ-коэффициент использования коллекторного напряжения=0,8÷0,95; выбираю 0,9
Рн’=0,150/2=0,075Вт=75мВт
Рк=0,4*0,075/1*0,9²=0,037Вт≈37мВт
Выбираю транзистор: КТ315А, у которого Ркмакс=150мВт; Екмакс=25В
2. Проверяю выполнение условия:
Ек≤(0,3÷0,4)Екмакс
6В≤(0,3÷0,4)*25=7,5÷10
Условие выполняется, следовательно, транзистор выбран правильно.
Выбор транзисторов для каскадов УННЧ:
В большинстве случаев каскады УННЧ могут быть выполнены на маломощных транзисторах. При этом, если усиливаемые частоты не превышают единиц килогерц, выбор транзисторов производится по низкочастотным параметрам из следующих соображений:
1. минимальной стоимости;
2. наибольшей величины коэффициента усиления (В) в схеме с общим эмиттером.
Выбираю транзистор КТ315Б т.к. он дешевый и имеет большёй коэффициент усиления.
Таблица№12:
Тип
Тракт
Ikmax,ma
Pkmax, mBt
Ukэ, В
fгр
h21э
КТ315А
УНЧ
100
150
25
100
20÷90
КТ315Б
УННЧ
100
150
20
100
50÷350
1.2.13.Обоснование структурной схемы приёмника по результатам эскизного расчёта.
На основании проведённого мной эскизного расчёта приёмника я составляю его блок-схему с указанием числа каскадов и особенностей каждого тракта.
В этой схеме входная цепь приёмника с магнитной антенной содержит два поддиапазона: поддиапазон километровых волн (ДВ) и поддиапазон гектометровых волн (СВ). Связь контура входной цепи с транзистором преобразователя частоты трансформаторная. Преобразователь частоты (ПЧ) собран по схеме с отдельным гетеродином. Нагрузкой в цепи коллектора служит 4 звена ФСС ПФ1П-2, связь ФСС с выходом смесителя и входом УПЧ индуктивная. Первый каскад УПЧ собран по апериодической схеме, второй широкополосный, одноконтурный с частичным включением контура в цепь коллектора. Диодный детектор собран по последовательной схеме с разделённой нагрузкой. Для автоматической регулировки усиления используется схема АРУ с задержкой включенная в цепь эмиттера УПЧ собранного по апериодической схеме. Каскад УННЧ собран по резистивной схеме с непосредственным включением нагрузки, каскад УНЧ выполнен по безтрансформаторной схеме на одиночной паре комплементарных транзисторов.
1.3 Расчётная часть проекта:
1.3.1 Подробный расчёт каскада АД:
Требования, предъявляемые к АД, сводятся к обеспечению следующих качественных показателей:
· возможно большего коэффициента передачи, который определяется отношением напряжения НЧ на выходе детектора к напряжению ВЧ на его входе;
· возможно меньших частотных и нелинейных искажений;
· возможно большего входного напряжения;
· возможно меньшего ВЧ напряжения на его выходе.
Расчёт детектора сводится к выбору схемы и ее элементов так, чтобы перечисленные требования удовлетворялись наилучшим образом.
Выбираю последовательный полу проводниковый детектор с разделённой нагрузкой, так как он удовлетворяет всем моим заданным требованиям, и обеспечивает регулировку уровня сигнала.
1. Диоды рекомендуется выбирать исходя из условия:
Rобр>>Rн>>Rпр
Выбираю диод Д9Б, так как у него Rобр>>Rпр.
Определяю сопротивление нагрузки детектора:
Rн=2*Кд*Rвх, где Кд - коэффициент передачи детектора, так как Uвх.д=0,6В, то Кд=0,2÷0,4 выбираю Кд=0,4.
Rвх- входное сопротивление детектора 4,6кОм
Rн=2*Кд*Rвх=2*0,4*4,6=3,68кОм.
2. Так как сопротивление нагрузки детектора одного порядка с входным сопротивлением УНЧ, величины сопротивлений R1 и R2 определяю по номограмме 9.18 в учебнике В.Д. Екимова.
Получаю R2=1,6кОм.
Принимаю R2=1.5 кОм из ряда Е6, типа СП3-10М с выключателем.
Определяю R1=Rн-R2=3,68-1,5=2,18кОм.
Принимаю R1=2,2кОм из ряда Е6, типа МЛТ-0,25.
3. Определяю общее сопротивление нагрузки переменному току:
4. Определяю общее сопротивление нагрузки постоянному току:
Rн==R1+R2=2,2+1,5=3,7кОм
Так как Rн»/Rн==3,12/3,7=0,84>0,8 то нелинейные искажения не будут превышать нормы.
5. Определяю величину эквивалентной ёмкости, шунтирующей нагрузку детектора:
6. Определяю величину ёмкости С2, обеспечивающую фильтрацию на промежуточной частоте:
Принимаю С2=6800пФ
7. Определяю величину ёмкости С1:
С1£Сэ-С2=18532,81-6800=11,732,81пФ
Принимаю С1=6800пФ
8. Проверяется величина эквивалентной ёмкости:
Сэ’=C1+C2=6800+6800=13600пФ
Так как Сэ’=13600<Сэ=18532,81пФ, то расчёт выполнен правильно.
1.3.2. Подробный расчёт каскада УННЧ:
Для предварительного усиления выбираю резистивный каскад
Исходные данные для расчёта:
1. Полоса усиливаемых частот
Fн-Fв=300-3500Гц
2. Коэффициент частотных искажений на нижней частоте за счёт Сс
Мнс=1,5дб
3. Коэффициент частотных искажений на нижней частоте за счёт Сэ
Мнэ=1,5дб
4. Коэффициент частотных искажений на верхней частоте
Мв=1,5дб
5. Напряжение питания каскада
Ек=6В
6. Температура окружающей среды
T=00С¸+300C
7. Параметры транзистора следующего каскада
Iвх м сл=2мА
Uвх м сл=1,5В
Rвх Тр сл=4кОм
Ксл=20
Fгр мин=300кГц
Ск макс=10пФ
Rвх об сл=50кОм
R1сл=50кОм
R2сл=10кОм
1. Определяю максимальный ток коллектора:
Rкор=0,4*Eк/Iк0=0,4*Eк/1,5*Iвхмсл=0,4*6/1,5*0,002=800Ом
Iкм=Iвхсл+(Uвхмсл/R2сл)+(Uвхмсл/Rкор)=0,002А+0,8/10000+0,8/800= 0,002А+0,00008А+0,001А=0,00308А=3,08мА
2. Определяю Ik0:
Ik0=(1,05¸1,2)*Ikm=3,234мА¸3,696мА, выбираю 3,5мА
3. Так как в пункте 1.2.12. я выбрал транзистор КТ315Б, то выписываю его параметры:
Iк макс
bмакс
bмин
Uкэмакс
fгр
Uкэ0
Rмм
Ск
100мА
350
50
30В
100МГц
15В
670 0С/Вт
7пФ
4. Рассчитываю сопротивления Rэ и Rк:
Rк=0,4*Ек/Iк0=0,4*6В/3,5мА=685,71Ом
Rэ=0,2*Ек/Iк0=0,2*6В/3,5мА=342,85Ом
Принимаю
Rк=1кОм по ряду Е24 типа МЛТ- 0,125
Rэ=360Ом по ряду Е24 типа МЛТ- 0,125
5. Рассчитываю напряжение Uкэ0:
Uкэ0=Ек-Iк0*Rк- Iк0*Rэ=6В-3,5мА*1000Ом-3,5мА*360Ом=6В-3,5В-1,26В=1,24В
6. По статическим характеристикам транзистора для значений Uкэ0 и Iк0 нахожу методом треугольника:
Uкэ0
Ik0
Iб0
Uбэ0
Rвхоэ
1,24В
3,5мА
0,05мА
0,43В
40Ом
7. Определяю максимальную и минимальную температуру перехода транзистора:
Тпмакс=Токрмакс + Iк0*Uкэ0*Rмм=300С+3,5мА*1,24В*670 0С/Вт= =300С+2,90С=32,9»330С
Тпмин =Токрмин + Iк0*Uкэ0*Rмм=00С+3,5мА*1,24В*670 0С/Вт= 00С+2,90С=2,9»30С
8. Определяю минимальное и максимальное напряжение Uбэ0, и максимальный ток Iкн:
Uбэ0макс= Uбэ0+0,0022*(20-Тпмин)=0,43В+0,0022*(20-3)=0,43+0,0374= =0,4674В
Uбэ0мин= Uбэ0+0,0022*(Тпмакс-20)=0,43В+0,0022*(33-20)=0,43+0,0286=
=0,4586В.
Так как транзистор КТ315Б кремневый то ток Iкн макс определяю по формуле:
Iкнмакс=Iкнс*3(Тпмакс-Тс)/10, где Iкнс= Iкн макс *1,5, а Тс температура при которой указано Iкн макс.
Iкнс= Iкн макс 1,5=3,5мА*1,5=5,25мА
Тс=250С
Iкнмакс=Iкнс*3(Тпмакс-Тс)/10=5, 25*3(33-25)/10=12,64мА
9. Определяю R2:
R2=6*Rвхоэ=6*8600=51600Ом
Принимаю R2=51кОм по ряду Е24 типа МЛТ-0.125
10. Принимаю падение напряжения на Rф равным 1.5 В, тогда:
Ек’=Ек-Urф=6-1,5=4,5В
11. Определяю сопротивление R1:
R1=R2*[bmin/(bmin+1)*(Ek’-Uбэ0макс)-Rэ*Iк0мин] / [(Rэ+R2)*Iк0мин-
-bмин/(bмин+1)*(Iк0мин*R2-Uбэ0макс)] =51000*[50/(50+1)*(4.5-0.4674)-
-360*0.0035]/[(360+51000)*0.0035-50/(50+1)*(0.0035*51000-0.4674)]=
=51000*[0.2431-1.26]/[179.76-0.0055]=-288Ом=288Ом
Принимаю R1=270Ом по ряду Е24 типа МЛТ-0,125
Рассчитываю Iк0макс и Uкэ0мин, которые не должны превышать справочные значения:
Iк0макс=βмакс/(βмакс+1)*[(Ек’*R2-Uбэ0мин*(R1+R2)+Iкнмакс* *(Rэ*(R1+R2)+R1*R2)]/[Rэ*(R1+R2)+R1*R2/(βмакс+1)]=350/(350+1)*[(4.5*
*51000-0.4586*(270+51000)+0,01264*(360*(270+51000)+270*51000)]/[
360*(270+51000)+270*51000/(350+1)]=350/351*[229500-23512+
+407351,8]/[18457200+39230.7]=0,033А=33,06мА
Uкэ0мин=Ек-Iк0макс*Rк-[(βmax+1)*(Iк0макс-Iкнмакс)*Rэ]/βmax=
=6-0,033*1000-[(350+1)*(0,033-0,01264)*360]/350=6-20,2-[2572,6]/350=
=6-3,3-1,98=0,72В
Так как значения не превышают справочные, то транзистор выбран правильно.
12. Определяю сопротивление Rк»:
Rдел сл=R1сл*R2сл/(R1сл+R2сл)=50000*10000/(50000+10000)=8333,33Ом
Rк»=Rк*Rделсл*RвхТрсл/[Rк*Rделсл+Rк*RвхТрсл+Rделсл*RвхТрсл]=
=1000*8333,33*4000/[1000*8333.33+1000*4000+8333.33*4000]=
=729.92Ом
13. Определяю ток входа максимальный:
Iвхмакс =Iкм/βмин=33,06мА/50=0,6612мА
14. Определяю коэффициент усиления:
Uвхм =Uбэм =Iвхмакс*Rвхоэ=0,6612мА*40Ом=0,026В
К=Uвхмсл/Uбэм=0,8В /0,026В=30,76раз»31раз.
15. Определяю ёмкость конденсатора Сс:
Rвых+Rвхсл=Rк+[RвхТрсл*Rделсл/(RвхТрсл+Rделсл)]=1000+[4000*8333,33/(4000+8333,33)]=1000+2702=3702Ом
Принимаю Сс=130пФ по ряду Е24
16. Определяю сопротивления Rдел и Rист:
Принимаю Rк’=3900Ом
Rдел =R1*R2/(R1+R2)=270*51000/(270+51000)=268Ом
Принимаю Rдел =270Ом по ряду Е24 типа МЛТ-0,125
Rист=R’к*Rдел/(R’к+Rдел)=3900*270/(3900+270)=252,5Ом
17. Определяю величину ёмкости конденсатора Сэ шунтирующего Rэ:
Sэс = (1+βмакс)/(Rист. + Rвхоэ)=(1+350)/(252,5+40)=1,2
Принимаю Сэ=0,56мкФ по ряду Е24
18. Определяю ёмкость Со и частотные искажения Мв:
Со=Сэдсл<(0,16/fгрмин*Rвхобсл)+Сксл*(1+Ксл)=(0,16/300000*50000)+
+0,00000001*(1+20)»0,00000021Ф»210пФ
1.3.3 Распределение между трактами приёмника частотных и нелинейных искажений:
Частотные искажения создаются всеми каскадами приёмника. В каскадах с резонансными контурами (входная цепь, УПЧ) они могут возникать, когда резонансная характеристика контуров недостаточно широкая, за счёт чего крайние частоты спектра принимаемого сигнала будут пропускаться хуже, чем средние. Общую величину частотных искажений ВЧ части приёмника определяют из выражения:
Мобщ,дб=Мпрес +МУПЧ +МУННЧ+МУНЧ
Для ДВ:
Мобщ,дб=3дб+6дб+1,5дб+1,5дб=12дб
Для СВ:
Мобщ,дб=2дб+6дб+1,5дб+1,5дб=11дб
Проверяю выполнение условия Мобщ,дб£М:
Для ДВ:
12£12,
Для СВ:
11£12
Условие выполняется для ДВ и для СВ, следовательно, частотные искажения приёмника не выходят за границы заданных частотных искажений.
Причиной нелинейных искажений является нелинейность характеристик усилительных приборов и диодов. Наибольшие нелинейные искажения создаются на детекторе и УНЧ. Общую величину нелинейных искажений определяют из выражения:
Кг.общ=Кг.d+Kг.УНЧ, ориентировочная величина искажений, создаваемых детектором составляет 1-2%, а нелинейные искажения УНЧ 3-5%.
Кг.общ=2%+5%=7%
Проверяю выполнение условия Кг.общ£Кг , где Кг- заданные нелинейные искажения по ТУ
7%£8%, условие выполняется, следовательно, нелинейные искажения приёмника не выходят за границы заданных нелинейных искажений.
1.3.4. Расчёт частотной характеристики УНЧ:
Расчёт АЧХ ведётся путём подставления значений частоты в формулу нормированного коэффициента усиления Y:
, где
Rнч =R1*Rн / ( R1+ Rн) - сопротивление нагружающее каскад(R1- приведённое сопротивление одного плеча, Rн - сопротивление динамика);
R1=250*Um2(В)/P(мВт), где Um-амплитуда напряжения на коллекторе.
Um=ξ*Ек
ω0=2*π*f-круговая (циклическая) частота.
Um=0,48*6В=2,88В
R1=250*2,882/150=13,8Ом
ω0=2*π*f=2*3,14*f=6,28*f
Rнч =13,8*6/(13,8+6)=82,8/19,8=4,18Ом
составляю таблицу:
Частота f, Гц |
Нормированный коэффициент усиления Y |
300 |
0,9687 |
500 |
0,9871 |
700 |
0,9930 |
900 |
0,9958 |
1100 |
0,9972 |
1300 |
0,9980 |
1500 |
0,9985 |
1700 |
0,9988 |
1900 |
0,9991 |
2100 |
0,9992 |
2300 |
0,9994 |
2500 |
0,9995 |
2700 |
0,9995 |
2900 |
0,9996 |
3100 |
0,9997 |
3300 |
0,9997 |
3500
0,9998
По полученным данным строю частотную характеристику оконечного УНЧ
1.3.5 Переход приёмника на новую элементную базу.
В настоящее время, во всем мире для уменьшения массы и габаритов для уменьшения кропотливости монтажных работ в радиоприемниках используют интегральные микросхемы (ИМС). Интегральная микросхема может содержать в себе большое количество элементов, имея в то же время довольно не большие габариты и массу. Современные микросхемы могут содержать в себе собранные каскады радиоприемного устройства, что значительно облегчает проектирование и конструирование радиоприемного устройства.
Заменим и в рассчитанном нами радиоприемнике транзисторные каскады на микросхемы.
Заменим микросхемой К174ХА36А следующие: смеситель, гетеродин, ПЧ, УПЧ, детектор, АРУ, оконечный усилитель ЗЧ рассчитанного нами радиоприемного устройства исходя из следующих соображений. Данная микросхема предназначена для работы в приемном тракте портативных и переносных АМ супергетеродинных преемников ДВ, СВ и КВ с низким напряжением питания и малым потребляемым током. Вместе с навесными элементами микросхема выполняет полную обработку радиосигнала с усилением напряжения ЗЧ.
Цоколевка микросхемы: 1-вход сигнала гетеродина, 2-общий вывод, 3 и 4-вход усилителя сигнала радио частоты (РЧ), 5-подключение индикатора настройки, 6 и 7- вход предварительного усилителя сигнала ЗЧ , 8-выход предварительного усилителя сигнала ЗЧ, 9-общий вывод предварительного усилителя сигнала ЗЧ, 10- плюсовой вход питания, 11-выход детектора, 12- подключение фильтрирующего конденсатора АРУ, 13- подключение преддетекторного LC контура, 14-вход усилителя сигнала ПЧ, 15-подключение блокировочного конденсатора УПЧ, 16-вход смесителя.
ИМС К174ХА36А имеет следующие электрические параметры:
1. Напряжение питания …………………………………..2¸9В
2. Потребляемый ток ……………………………………..20мА
3. Выходное напряжение детектора, не менее ….............100мВ
4. Максимальная выходная мощность…………………...0,7Вт
5. Рассеиваемая мощность, не более……………………..1Вт
6. Температура окружающей среды……………………...-25….+550С
7. Эффективность АРУ(изминение напряжения на выходе усилителя ЗЧ) не менее, ..………………………………………………6дб
8. Частота входного сигнала РЧ, не более………………50МГц
Исходя из выше перечисленных параметров микросхемы видно, что она подходит по своим электрическим параметрам в рассчитанный радиоприемник.
1.3.6 Технико-экономическое обоснование
Спроектированный в процессе курсовой работы радиоприемник имеет следующие технические преимущества: данный радиоприемник собран на отечественных элементах, что обеспечивает быструю находку элемента вышедшего из строя; радиоприемник собран на микросхемах, что увеличивает его срок службы; отечественные элементы меньше западных аналоговых элементов «боятся» скачков напряжения, что удлиняет срок службы радиоприемнику.
Все элементы, которые, используются в РПУ, необходимы, так как без какого-либо элемента схема изменит, свои параметры и на выходе получится искаженный сигнал.
С экономической точки зрения спроектированный радиоприемник имеет следующие преимущества: все элементы, используемые в приемнике отечественные, что значительно снижает стоимость каждого элемента и приемника в целом; так как в приемнике используются отечественные радиодетали то в случае выхода из строя одного из них, поиск нового радио элемента будут легче с точки зрения материальной и физической сторон; в приемнике использованы только самые необходимые элементы, которые нужны для нормальной работы радиоприемника и в схеме не используется ни какого лишнего элемента, т.е. приемник выполнен в оптимальном варианте, что снижает его себестоимость.
При использовании материалов активная ссылка на источник обязательна.