Рефераты. Системы связи






Первая пара боковых полос может быть описана как 0,33А×[sin(wн+wм)t+sin(wн-wм)t] имеет амплитуду 0,33 Ан; вторая пара - wн±2wм - имеет амплитуду 0,047Ан. Отметим, что амплитуды различных боковых полос не являются монотонно убывающими по мере того, как их частоты все более и более удаляются от wн. Фактически в приведенном примере с d=5 наибольшей пo амплитуде (0,4 Ан) является четвертая пара боковых полос. Амп­литуды различных боковых полос получены из специальных таблиц, описывающих эти полосы для различных значений d. Очевидно, что ширина полосы, необходимая для передачи семи пар боковых полос, составляет ±7×15 кГц, или 14×15 кГц= 210 кГц (для fм=15 кГц). На этом же основании ширина полосы, необходимая для d=10 (Dwн/wм=10), равна 26fм; 13 боковых полос в этом случае составят 26×15=390 кГц. Таким образом, частотная модуляция требует значительной ширины полосы частот и, как следствие, ис­пользуется только при несущих с частотами 100 МГц и выше.

Рис. 5. Боковые полосы ЧМ.

wн-несущая частота; wм-частота модуляции.

 

Частотно-модулированная связь гораздо менее чувствительна к помехам. Шумы, попадающие в ЧМ-сигнал, будь то атмосферные возмущения (статические), тепловые шумы в лампах и сопротивле­ниях или любые другие шумы, имеют меньшую возможность влиять на прием, чем в случае AM. Основной причиной этого является по­просту тот факт, что большинство шумов амплитудно модулируют несущую. Делая приемник нечувствительным к изменениям амплиту­ды, практически устраняем эту нежелательную модуляцию. Вос­становление информационного сигнала из ЧМ-волны связано лишь с частотным детектированием, при котором выходной сигнал зависит лишь от изменений частоты ЧМ-сигнала, а не от его амплитуды. Большинство приемников содержит усилитель-ограничитель, который поддерживает постоянную амплитуду ЧМ-колебаний, устраняя тем самым любой АМ-сигнал.

Существуют различные методы ЧМ-детектирования и селекции. В основе большинства методов лежит использование наклона час­тотной характеристики резонансного контура (рис. 6). Амплитуда отклика изменяется с частотой. Для wн+Dwн получаем амплиту­ду А1, для wн-Dwн - амплитуду А2, а для частот между

Рис. 6. Принцип использования резонансного контура в качестве частот­ного детектора.

wн+Dwн и wн-Dwн имеем все промежуточные амплитуды меж­ду А1 и А2. Выходной сигнал соответствует девиации частоты вход­ного сигнала (хотя и не совсем линейно в простом резонансном кон­туре) и тем самым воспроизводит первоначальный модулирующий сигнал.

Цепь фазовой автоподстройки (ФАП), вскоре стала одним из наиболее распространенных средств ЧМ-детектировапия, особенно применительно к импульсным моду­лирующим сигналам. Некоторые схемы ФАП снабжены логическими выходными схемами, согласованными с соответствую­щими входными сигналами импульсной формы.

Как отмечалось ранее, ЧМ —лишь один тип угловой модуля­ции. Другим является фазовая модуляция. Эта модуляция очень похожа на ЧМ. При фазовой модуляции мгновенная фаза несущей из­меняется пропорционально мгновенной амплитуде модулирующе­го сигнала. Это приводит к изменению несущей частоты wн, как вид­но из уравнения

wфаз=wн+kфwмАмsin(wмt)                  (11)

где kф, - коэффициент пропорциональности, измеряемый в едини­цах рад/В. Фазовая и частотная модуляция часто используются в одной системе модуляции, так как прием и детектирование обеих идентичны.

Функциональные схемы передатчика и приемника с ЧМ почти те же, что и для AM. Ширина полосы частот ЧМ существенно шире, а несущая частота значительно выше (100 МГц и более). Более широ­кая полоса частот приводит к более верному воспроизведению вход­ных звуковых сигналов, так что звуки с частотами выше 5 кГц должны передаваться системами ЧМ. В приемниках с частотной мо­дуляцией иногда используется двойное гетеродинирование с двумя промежуточными частотами - 5 МГц и 455 кГц.


2.3. ИМПУЛЬСНАЯ МОДУЛЯЦИЯ (ИМ)

 

Импульсная модуляция (ИМ) не является в действительности каким-то особым типом модуляции. Этот термин характеризует ско­рее вид модулирующего сигнала. Далее различают импульсную амп­литудную и импульсную частотную модуляции. Здесь учитывают то, каким образом информация представлена — с помощью импульса или ряда импульсов. Можно рассматривать в качестве модулируе­мой величины амплитуду импульса, или его ширину, или его поло­жение в последовательности импульсов и т. д. Следовательно, су­ществует большое разнообразие методов импульсной модуляции. Все они используют в качестве формы передачи или AM, или ЧМ.

Рис. 7. Последовательность импульсов, отображающих число 37 в двоично-десятичном коде (младший значащий разряд первый).

 

Импульсная модуляция может быть использована для передачи как цифровых, так и аналоговых форм сигнала. Когда речь идет о цифровых сигналах, мы имеем дело с логическими уровнями — вы­соким и низким — и можем модулировать несущую (с помощью AM или ЧМ) рядом импульсов, который представляет цифровое значе­ние. Например, если для числа 37 передается код ДКД (двоично-кодированное десятичное число) 00110111, то для модуляции несу­щей просто должна использоваться указанная последовательность нулей и единиц. Каждый нуль может быть представлен уровнем 0В, а каждая единица — уровнем, например, 5В. Образован­ная в результате последовательность импульсов показана на рис. 7 вместе с совпадающим рядом синхронизирующих импульсов, необходимых для идентификации положения единиц и нулей. В указанной последовательности важен порядок импульсов. Сначала передается МЗДР (младший значащий десятичный разряд) 7, а за­тем СЗДР (старший значащий десятичный разряд) 3. В каждом де­сятичном разряде на первом месте старший двоичный разряд (бит).

Отметим, что, даже если все импульсы имеют полную амплитуду 5 В, обычно допускается изменение цифровых уровней в широком диапа­зоне напряжений, что не приводит к нарушению нормальной работы системы. Например, логический уровень «1» может изменяться в пре­делах от 2,4 до 5,5 В.

При использовании импульсных методов для передачи аналого­вых сигналов необходимо сначала преобразовать аналоговые данные в импульсную форму. Это преобразование также относится к моду­ляции, так как аналоговые данные используются для модулиро­вания (изменения) последовательности импульсов или импульсной поднесущей. На рис. 8,а показана модуляция синусоидальным сиг­налом амплитуд последовательности импульсов.

Рис. 8. Форма сигналов амплитудно-импульсной модуляции.

а—форма модулированного сигнала; б—воспроизведенная форма сигнала при низкой часто­те следования импульсов, Т1 период последовательности импульсов; в — воспроизведенная форма сигнала при высокой частоте следования импульсов, Т2 период последовательности импульсов.


          Амплитуда каждого импульса в модулированной последовательности зависит от мгновен­ного значения аналогового сигнала. Синусоидальный сигнал может быть восстановлен из последовательности модулированных импуль­сов путем простой фильтрации. На рис. 8,б графически показан процесс восстановления первоначального сигнала путем соединения вершин импульсов прямыми линиями. Однако восстановленная на рис. 8,б форма колебаний не является хорошим воспроизведени­ем первоначального сигнала из-за того, что число импульсов на пе­риод аналогового сигнала невелико. При использовании большего числа импульсов, т. е. при большей частоте следования импульсов по сравнению с частотой модулирующего сигнала, может быть достигнуто более лучшее воспроизведение (рис.  8,в). Этот процесс амплитудно-импульсной модуляции (АИМ), относящийся к модуля­ции поднесущей последовательности импульсов, может быть выпол­нен путем выборки аналогового сигнала через постоянные интерва­лы времени импульсами выборки с фиксированной длительностью. Импульсы выборки — это импульсы, амплитуды которых равны ве­личине первоначального аналогового сигнала в момент выборки. Частота выборки (число импульсов в секунду) должна быть по край­ней мере в два раза большей, чем самая высокая частота аналогового сигнала. Для лучшей воспроизводимости частота выборки обычно устанавливается в 5 раз большей самой высокой частоты модуляции.

АИМ является только одним типом импульсной модуляции. Кро­ме него существуют:

ШИМ — широтно-импульсная модуляция (модуляция импуль­сов по длительности);

ЧИМ — частотно-импульсная модуляция;

КИМ — кодово-импульсная модуляция.

Широтно-импульсная модуляция преобразует уровни выборок. напряжений в серии импульсов, длительность которых прямо пропорциональна амплитуде напряжений выборок (рис. 9,а). Отме­тим, что амплитуда этих импульсов постоянна; в соответствии с мо­дулирующим сигналом изменяется лишь длительность импульсов. Интервал выборки — интервал между импульсами — также фик­сирован.

Частотно-импульсная модуляция преобразует уровни выборок напряжений в последовательность импульсов, мгновенная частота которых, или частота повторения, непосредственно связана с вели­чиной напряжений выборок. И здесь амплитуда всех импульсов оди­накова, изменяется только их частота. По существу все аналогич­но обычной частотной модуляции, лишь несущая имеет несинусои­дальную форму, как в случае обычной ЧМ; она состоит из последо­вательности импульсов.

Кодово-импульсная модуляция преобразует выборки напряжения в кодированное сообщение. К примеру, дискретный уровень, равный 5,5 В, может быть представлен двоичным числом 101.101=5,5 с помощью аналого-цифрового преобразователя. Кодовое сообщение 101.101 представляет собой некоторую выборку напряжения Vs. Подобным кодированием (в данном случае двоичным кодом) преоб­разуют каждую выборку. Последовательность таких кодовых сооб­щений представляет собой серию чисел, описывающих последова­тельные выборки. Код может быть любым: двоичным с шестью раз­рядами, как представленный выше, или двоичным кодом с N разря­дами, или двоично-кодированным десятичным и т. д. (рис. 7).

Рис. 9. Широтно-импульсная модуляция.

 

Приведенные выше модуляционные схемы — лишь некоторые представители большого числа используемых методов. Подчеркнем, что рассмотренная здесь ИМ-модуляция относится к модуляции поднесущей, т. е. модуляции последовательности импульсов, которые затем используются в системах AM или ЧМ. Речь идет о двух сле­дующих друг за другом модуляциях. Во-первых, информация мо­дулирует последовательность импульсов. Здесь может быть исполь­зована АИМ, ШИМ, ЧИМ, КИМ или любой другой вид модуляции. Во-вторых, содержащая информацию поднесущая модулирует синусоидальную несущую.

Частотно-импульсная модуляция синусоидальной несущей при­водит к Dwн -девиации частоты несущей скачкообразным отклонени­ем от несущей. Например, частотная модуляция логических уровней «0» и «1» (0 В и 5В) дает две частоты — wн (для логического уровня «0») и wн+Dwн (для уровня «5»). По существу, мы просто сдви­гаем частоту несущей от w к wн+Dwн для изображения логичес­кого уровня «1». Этот тип частотной модуляции называется также и частотной манипуляцией и обычно используется в передаче сигналов с помощью телеграфа и других цифровых устройств связи. Для вос­становления логических уровней из частотно-манипулированной несущей может быть использована цепь фазовой автоподстройки (ФАП).

          Методы импульсной модуляции очень широко распространены в приложениях телеметрии.


3. ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ.

 

3.1. ТЕЛЕМЕТРИЯ.

 

Телеметрией называется проведение измерений на расстоянии и передача данных к месту их обработки и (или) хранения. Типич­ная телеметрическая система содержит, как показано на рис. 10, три основные части:

Рис. 10. Типичная телеметрическая система.

 

1) источник данных, который обычно является датчиком, преобразующим измеряемые параметры в электрические сигналы; 2) способ передачи данных; 3) приемное устройство и вос­становление переданных данных. Содержание этого раздела будет сконцентрировано на различных методах передачи. Рассматривая методы телеметрии, будем сосредотачивать внимание на способах, обеспечивающих наиболее эффективное использование линии связи.

Что подразумевается под эффективным использованием линии связи, показывает следующий пример. Рассмотрим амплитудную модуляцию несущей с частотой 100 МГц (рис. 11). Предположим, что допустимая ширина полосы передачи составляет ±5 кГц. Ин­формация, модулирующая несущую, имеет ширину полосы частот 1 кГц. Из того, что мы знаем об амплитудной модуляции, находим, что модулированная несущая будет иметь полосу 100 МГц ± 1 кГц. Это — полоса, необходимая для передачи данных с по­лосой 1 кГц. Ясно, что будет непроизводительно при полосе ±5 кГц занимать передаваемой информацией только полосу ±1 кГц. Теоретически в полосе ±5 кГц можно передать пятикратное число дан­ных, содержащихся в полосе 1 кГц. Вообще говоря, на одной несу­щей 100 МГц мы могли бы передавать пять каналов данных с поло­сами по 1 кГц. Для такого увеличения эффективности передачи раз­работаны разные методы. Чаще всего используются методы частот­ного разделения (или частотного уплотнения каналов) и временного разделения (или временного уплотнения каналов).

Рис. 11. Несущая 100 МГц с амплитудной модуляцией, wм=0±1 кГц, разрешенная полоса wр=±5 кГц.

 

3.1.1. Частотное разделение каналов (частотное уплотнение линии связи).

 

Типичная для телеметрии несущая частота 230 МГц может быть использована с полосой ±320 кГц (стандарты ВМФ н ВВС США). Это означает, что при использовании ее в амплитудной модуляции (AM) информация, которую можно передать без искажений, может иметь ширину полосы 320 кГц. Однако большинство приложений телеметрии оперирует сигналом с гораздо более узкой полосой. Для определенности положим, что ширина полосы частот сигнала составляет 4 кГц. Вместо непосредственной модуляции этим сигна­лом несущей 230 МГц можно сначала модулировать поднесущую с частотой, к примеру, 32 кГц. Модуляция поднесущей образует сиг­нал с частотой 32 ± 4 кГц (в случае AM). Промодулированной под­несущей можно теперь модулировать несущую 230 МГц. На рис. 12 показаны частотные полосы, использованные в такой передаче. Ос­тальная часть полосы ±320 кГц не используется. Имеется возмож­ность использовать и другую поднесущую, например 44 кГц, для другого источника данных с аналогичной полосой и получить моду­лированную поднесущую 44 ± 4 кГц (показанную штриховыми ли­ниями на рис. 12). Очевидно, что можно заполнить разрешенную полосу частот ± 320 кГц большим числом поднесущих, перено­сящих информацию от большого числа источников. В этом примере полоса частот информации была произвольно ограничена значением 4 кГц. Можно отметить, что модулированные поднесущие отделяет неисполь­зованная полоса (здесь 4 кГц), 32 ± 4 кГц (полоса от 28 до 36 кГц) и 44 ± 4 кГц (от 40 до 48 кГц), т. е. имеется пустой интервал 4 кГц между высшей частотой нижней поднесущей (36 кГц) и низшей часто­той верхней поднесущей (40 кГц). Это отделение необходимо, чтобы предотвратить взаимные помехи между каналами и позволить осу­ществить разделение поднесущих на приемном конце системы. Рас­смотренный пример представляет собой АМ/АМ-телеметрическую систему, где как поднесущая, так и несущая являются амплитудно-модулированными.

Рис. 12. Поднесущие: несущая частота 230МГц, полоса поднесущей ±4 кГц.


Уплотнения в два раза можно достигнуть благодаря использова­нию передачи на одной боковой полосе, т. е. передачи сигнала модули­рованной поднесущей, состоящего только из верхней полосы 32— 36 кГц или из нижней полосы 28—32 кГц. Всякий раз, когда это возможно, используется такая однополосная передача. На рис. 13 показан ряд частотных фильтров, которые требуются при разделе­нии каналов с двумя боковыми полосами (рис. 12).

Рис. 13. Фильтрация при частотном разделении.

 

Здесь F1, F2 и F3 — три поднесущие, a Df1,Df2 и Df3 — полосы частот этих поднесущих (в данном случае ±4 кГц = 8 кГц). Для обеспечения минимального взаимного влияния необходимо, чтобы точка пересе­чения амплитудно-частотных характеристик (АЧХ) фильтров была бы на 80 дБ ниже максимума. Необходимо подчеркнуть, что Df1,Df2 и Df3 не обязательно должны быть одинаковыми: их значения определяются характером информации. На рис. 14 приведена уп­рощенная функциональная схема трехканальной системы связи с частотным разделением.

Рис. 14. Частотное разделение. Функциональная схема передатчика и приемника с тремя каналами.

 

Каждый источник данных модулирует поднесущую определен­ной частоты. Источник № 1 связан с поднесущей частотой F1 и т. д. Все модулированные поднесущие затем объединяются смесите­лем для модуляции несущей и передаются к приемнику. Приемник воспроизводит исходный сигнал, который модулировал несущую, а именно набор поднесущих. Поднесущие разделяются набором час­тотных фильтров, каждый из которых создает полосу пропускания, согласующуюся с определенной поднесущей. Фильтр 1 пропускает полосу частот вокруг центральной частоты F1 поднесущей 1 и т. д. (рис. 13). Выходной сигнал каждого фильтра состоит из амплитуд­но-модулированной поднесущей, модулирующий сигнал которой соответствует определенному источнику данных. Отметим, что в схеме используются два детектора. Первый «детектирует» или вос­производит модуляцию несущей, в то время как второй восстанавли­вает модуляцию поднесущей. Этого и следовало ожидать, так как система состоит из двух последовательных амплитудных модуляции (АМ/АМ). Таким образом, имеется система связи, в которой для каж­дого источника данных предназначен определенный диапазон частот. Для обеспечения приема на двойной полосе каждый фильтр должен обладать полосой пропускания для двух частотных диапазонов, со­ответствующих верхней и нижней боковой полосе. Обе боковые по­лосы определенного капала затем объединяются для образования выходного сигнала этого канала.

Система, рассмотренная выше, является АМ/АМ-системой. Дру­гие схемы модуляции, такие, как AМ/ЧМ или ЧМ/ЧМ, часто исполь­зуются в телеметрии.

Использование спектра радиочастот для телеметрии и других приложений регулируется различными правительственными учреж­дениями США. Комиссия по радиодиапазонам (IRIG) выпустила набор стандартов для телеметрии, пересмотренный в мае 1973 г. Обсудим некоторые из этих стандартов, имеющие отношение к ЧМ/ЧМ-системам телеметрии.

Для применений телеметрии предназначен 21 канал с центрами поднесущей, расположенными в пределах от 400 Гц до 165 кГц. Подробные сведения о всех несущих приведены в таблице на рис. 15.


 

Канал

Центральная частота, Гц

Нижняя граница девиации, Гц

Верхняя граница девиации, Гц

Номинальная полоса частот, Гц

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.