Рефераты. Электрорадиоматериалы. Методические указания к лабораторным работам






20

 

 

 

 

 

 

90

 

 

 

4. Оформление отчета

1.      Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.

2.      По данным измерений табл. 1.1 построить график зависимости R(q). По графику R(q), а также по формулам (1.3), (1.5) рассчитать и занести в таблицу 1.1 значения aR, ar, и r для каждого из исследованных проводников. По данным таблицы 1.1 построить графики зависимостей R(q), r(q), aR(q) и ar(q).

3.      Рассчитать длины свободного пробега электронов для исследованных проводников при комнатной температуре.

4.      По данным таблицы 1.2 и по формуле (1.6) рассчитать средние значения относительной удельной термо-э.д.с. для исследованных термопар. построить графики зависимостей ЕТ(q).

5.        Привести краткое описание исследованных в работе материалов (хими­ческий состав, электрические свойства, области применения).

6.      Дать краткие выводы по результатам работы.

 

Контрольные вопросы

1.        Какие материалы относятся к классу проводников?

2.        Чем обусловлена высокая электропроводность проводников?

3.        Как можно классифицировать проводники?

4.        Какие факторы и почему влияют на удельное электрическое сопротивление?

5.        Что такое температурный коэффициент удельного сопротивления?

6.        Для каких материалов и почему важно учитывать линейное расширение при нагревании?

7.        Что такое термо-э.д.с., в чем причина ее возникновения?

8.        Исходя из каких соображений подбираются материалы для термопар?



Работа 2. Исследование свойств терморезисторов

Цель работы:

а) определение зависимости сопротивления терморезисторов от температуры;

б) определение энергии активации и коэффициента температурной чувствительности полупроводника;

в) оценка величины постоянной времени тепловой инер­ции терморезисторов;

г) построение динамических вольтамперных характеристик терморезисторов.

1. Краткие сведения из теории

Терморезистором называется полупроводниковый резистор, сопротивление которого в сильной степени зависит от температуры.

Удельная электрическая проводимость полупроводников

 ,                                                           (2.1)

где  – концентрация, – подвижность электронов и дырок соответственно.

В примесных (n-типа или p-типа) полупроводниках одним из слагаемых в приведенном выражении можно пренебречь.

Подвижность носителей при нагревании изменяется сравнительно слабо (по степенному закону, ~), а концентрация очень сильно (по экспоненциальному закону, ~). Поэтому температурная зависимость удельной проводимости полупроводников подобна температурной зависимости концентрации основных носителей, а электрическое сопротивление терморезисторов может быть определено по формуле:

                                                  (2.2)

где Nо – коэффициент, зависящий от типа и геометрических размеров полупроводника; DЭ – энергия активации примесей (для примесных полупроводников) или ширина запрещенной зоны (для собственных полупроводников), k – постоянная Больцмана.

постоянная В =DЭ/k  носит название коэффициент температурной чувствительности и приводится в паспортных  данных на терморезистор. экспериментально коэффициент температурной чувствительности определяют по формуле

                                                      (2.3)

где Т1 и Т2 – исходная и конечная температуры рабочего температурного диапазона, R1 и R2 – сопротивления терморезистора при температуре соответственно Т1 и Т2.

На рис. 2.1 приведен график зависимости сопротивления полупроводникового резистора от температуры.

Чаще всего терморезисторы имеют отрицательный температурный коэффициент сопротивления aR. Выпускаются также терморезисторы, имеющие в сравнительно узком интервале температур положительный aR  и называемые позисторами. При нагревании величина сопротивления терморезисторов убы­вает, а позисторов возрастает в сотни и тысячи раз. В справочниках значение  aR приводится для температуры 20 оС. Значения aR терморезисторов для любой температуры в диапазоне 20…150 оС можно определить по формуле: 

                               (2.4)

терморезистор характеризуется оп­ределенной тепловой инерцией, зависящей от химических свойств полупроводника и конструкции элемента (площади излучающей поверхности). Тепловая инерция оценивается постоянной времени t – временем, за которое разность между собственной температурой тела и температурой среды уменьшается в е (2,7183) раз.

Если терморезистор, имеющий температуру qо, поместить в среду с температурой qс¹qо, то его температура будет изменяться с течением времени по показательному закону:

.                                                    (2.5)

На рис.2.2 показан процесс изменения температуры терморезистора при его остывании.

С остыванием терморезистора сопротивление его увеличивается (рис. 2.3). Знание зависи­мостей R(q) (рис.2.1) и R(t) (рис. 2.3) позволяет, задаваясь значениями R  и определяя по кривым рис. 2.1 и 2.3 соответствующие им значения q и t, построить зависимость q(t) и определить t.

Различают статическую и динамическую вольтамперные характеристики (ВАХ) терморезистора. При снятии статической ВАХ ток фикси­руется после длительной выдержки терморезистора при каждом значении напряжения. Динамическая ВАХ показывает реакцию тер­морезистора на воздействие импульсов напряжения разной величины, но одинаковой длительности. ток фиксируется в конце импульса.

Терморезистор обладает одной статической и семейством динамических ВАХ, соответствующих  ряду фиксированных длительностей Dt импульсов напряжения. ВАХ терморезистора являются нелинейными. динамические ВАХ терморезистора приведены на рис. 2.4.

При длительности импульса  терморезистор не успевает нагреться и сопротивление его практически не изменяется с ростом напряжения. При длительности  терморезистор нагревается, и  ВАХ становится существенно нелинейной. Чем больше длительность импульса, тем больше ток при одной и той же величине напряжения. Статическая ВАХ соответствует .

2. Описание экспериментальной установки

Эксперимент проводится на установке аналогичной изображенной на рис.1.3. терморезистор помещается в термо­стат, температура внутри которого измеряется термометром или термопарой. Сопротивление резистора измеряется омметром.

снятие вольтамперных характеристик выполняется по схеме, приведенной на рис. 2.5. Измерительной цепь питается от источника постоянного регулируемого напряжения ИП со встроенным вольтметром V. Ток через терморезистор измеряется миллиамперметром.

3. Порядок выполнения работы.

3.1. снятие зависимости R(q) сопротивления терморе­зистора от температуры.

 Включить термостат, электронный термометр и омметр. Измерить сопротивление терморезистора при различных температурах – от комнатной до максимальной, равной 90°С,  с интервалом Dq =10 °С. Результаты опыта занести в табл. 2.1.

Таблица 2.1

Опыт

 

Расчет

Примечание

q

R

 

Т

 

aR

 

oC

Ом

 

К

 

град.-l

 

20

90

 

 

 

Терморезистор типа  ...

 

 

3.2. опре­деление тепловой постоянной времени терморезистора.

Измерив сопротивление терморезистора при 90 °С, быстро извлечь его из термостата. Момент извлечения принять за t = 0. Отключить термостат.

фиксируя время, измерять сопротивление терморезистора при его остывании до тех пор, пока оно не увеличится примерно в три раза. Данные измерений занести в табл. 2.2.

Таблица 2.2

t

 

с

 

0

 

10

 

20

 

30

 

40

 

50

 

60

 

70

 

и т. д.

 

R

 

Ом

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


3.3. Снятие динамических вольтамперных характеристик

 Собрать электрическую схему установки в соответствии с рис. 2.5.

Установить напряжение на выходе источника питания ИП равное 5В. Замкнув ключ К, записать показания миллиам­перметра в начальный момент времени и далее через каждые 10 секунд. Через 60 с ключ разомкнуть. Перед следующим измерением выдержать минутную паузу для охлаждения терморезистора. Повторить измерения для напряжений 10, 15, 20, 25, 30 В; длительность паузы с ростом напряжения следует увеличивать. Результаты опыта занести в табл. 2.3.

Таблица 2.3

U, В

i (мА) через с

t = 0

10

20

30

40

50

60

Примечание

5








Тип резистора …

10






 







 


30









4. Оформление отчета

1.      Привести схемы экспериментальных установок, данные измерительных приборов и исследуемых элементов, а также таблицы измерений.

2.      Для исследованного температурного диапазона определить по формулам (2.2) и (2.3) энергию активации DЭ и коэффициент температурной чувствительности В терморези­стора.

3.      Рассчитать по формуле (2.4) и занести в табл. 2.1 значения aR. по данным табл. 2.1 построить графики зависимостей R=f(q) и aR= f(q).

4.      на основании данных табл. 2.1 и 2.2. построить график зависимости q(t). Определить постоянную времени t тепловой инерции терморезистора. За температуру среды qс принять комнатную температуру.

5.      по данным табл. 2.3  построить динамические вольтамперные характеристики терморезистора.

6.      дать краткие выводы по результатам работы.

 

Контрольные вопросы

1.        Что называют терморезистором?

2.        Чем обусловлена электропроводность полупроводников?

3.        В чем причина сильной температурной зависимости сопротивления полупроводниковых резисторов?

4.        Что такое коэффициент температурной чувствительности, как его можно определить экспериментально?

5.        Почему терморезисторы обладают отрицательным температурным коэффициентом сопротивления?

6.        Что такое постоянная времени терморезистора, отчего зависит ее величина?

7.        Как практически можно определить постоянную времени терморезистора?

8.        В чем различие между статической и динамической ВАХ терморезистора?

 

Работа З.  Исследование свойств варисторов

Цель работы – исследование основных свойств варисторов и иллюстрация их практического применения.

1. Краткие сведения из теории

варистором называется нелинейный полупроводниковый резистор, электрическое сопротивление которого изменяется в зависимости от приложенного напряжения.

Варисторы изготавливаются из размолотого карбида кремния (SiC) с добавкой связующего вещества.

Причинами, обусловливающими нелинейность вольтамперной характери­стики варистора, являются:

– микронагрев контактов между отдельными зернами карбида кремния, приводящий к возрастанию проводимости элемента во всем объеме;

– увеличение проводимости вследствие частичного про­боя оксидных пленок, покрывающих зерна карбида кремния, при напряженностях электрического поля E = 105…106 В/м;

– существование на поверхности зерен карбида кремния запирающих р-п-переходов, обусловленных различ­ным характером электропроводности по поверхности и в объеме отдельного зерна SiC.

ВАХ варистора (рис. 3.1), как и всякого нели­нейного резистора, в рабочей точке (точка А) харак­теризуется статическим и дифференциальным сопротивле­ниями

                                                            (3.1)

где МU, MI масштабы по осям координат.

Степень нелинейности ВАХ оценивается коэффициентом нелинейности

                                              ,                                                            (3.2)

который у варисторов довольно велик (b = 2…7) и несколько меняется в различных точках ВАХ. Разделяя переменные в выражении (3.2) и интегрируя, можно получить аналитическую аппроксимацию ВАХ варистора       ,                                                                        (3.3)

 где В – посто­янная, зависящая от свойств полупроводникового материала и геометрических размеров варистора.


Варисторы широко применяются в технике для защиты от перенапряжений (искрогасители), в стабилизаторах и ограничителях напряжения, в преобразователях сигнала (умножители частоты). В данной работе исследуется мостовой стабили­затор напряжения на варисторах (рис. 3.2). напряжение на выходе стабилизатора равно разности напряжений на варисторе (U) и на линейном резисторе (UR):     Uвых = U - UR. С ростом входного напряжения Uвх растет ток в элементах моста. Выходное напря­жение, как видно из рис. 3.3, вначале увеличи­вается, затем падает до нуля и после изменения знака снова растет по абсолютной величине. Внешняя характери­стика стабилизатора Uвых(Uвх) в режиме холостого хода приведена на рис. 3.4.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.