Рефераты. Введение в микроэлектронику






9.       Нарисуйте разрез структуры МДП-транзистора со встроенным каналом.

10.   Нарисуйте разрез структуры МДП-транзистора с индуцированным каналом.

11.   Расскажите о принципе работы МДП-транзистора.

12.   Что такое планарные переходы?

13.   Какова последовательность основных технологических этапов получения диффузионного планарного транзистора?

Глава 6. Интегральные схемы.


6.1. Общие понятия.


Блоки и узлы радиоэлектронной аппаратуры на втором этапе развития электронной техники (после электронных ламп) строились на полупроводниковых приборах. Но воз­никла мысль, а можно ли отдельные блоки и узлы создать в одном корпусе на одной подложке или в одном кристалле полупроводника. Эта идея начала реализовываться в миро­вой промышленности с конца шестидесятых годов.

Интегральная схема (ИС) — это конструктивно за­конченное изделие электронной техники, выполняющее опре­деленную функцию, и содержащее совокупность транзисторов, полупроводниковых диодов, резисторов, конденсаторов и дру­гих элементов, электрически соединенных между собой.

Теория, методы расчета и технология изготовления ИС составляют основное содержание микроэлектроники.

По технологии изготовления различают полупроводниковые (т. е. монолитные), пленочные и гибридные ИС.

В полупроводниковой ИС все элементы и межэлементные соединения выполнены в объеме и на поверхности полупроводника, обычно кремния. Как правило, для полупроводниковых ИС характерно создание всех элементов одновременно в ходе единого технологического цикла.

В пленочных ИС все элементы и межэлементные соеди­нения выполнены в виде проводящих, диэлектрических и резистивных пленок (слоев) на подложке. Такие ИС содержат, как правило, только пассивные элементы (резисторы, конденсаторы, катушки индуктивности, межсоединения). Вариантами пленочных ИС являются тонкопленочные с толщиной пленок 1...3 мкм и менее и толстопленочные с толщиной пленок свыше 3...5 мкм. Деление пленочных ИС обусловлено не столько толщиной пленок, сколько методом их нанесения в процессе создания пассивных элемен­тов. Пассивные элементы тонкопленочных схем наносят на подложку преимущественно с использованием термовакуумного распыления и катодного осаждения, а пассивны элементы толстопленочных схем получают нанесением и вжиганием проводящих и резистивных паст.

Наряду с полупроводниковой и пленочной широко используется гибридная технология, в которой сочетаются тонкопленочные или пассивные толстопленочные элемен­ты с полупроводниковыми активными, называемыми ком­понентами гибридной схемы. Частным случаем гибридной ИС является многокристальная ИС, содержащая в качестве компонентов несколько бескорпусных полупроводни­ковых схем на одной подложке. Наиболее распространены в настоящее время полупроводниковые и гибридные ИС.

Число элементов в данной ИС характеризует ее степень интеграции. В соответствии со степенью интеграции все ИС условно делят на малые (МИС — до 102 элементов на кри­сталл), средние (СИС — до 103), большие (БИС — до 104), сверхбольшие (СБИС — до 106), ультрабольшие (УБИС — до 109) и гигабольшие (ГБИС — более 109 элементов на кри­сталл). Иногда степень интеграции определяют величиной k=lgN, где N — число элементов, входящих в ИС, а значение k определяется до ближайшего целого числа в сторону увеличения. Например, ИС первой степени интеграции (k = l) со­держит до 10 элементов, второй степени интеграции (k = 2) — свыше 10 до 100, третьей степени интеграции (k = 3) — свыше 100 до 1000 и т. д.

При всем своем многообразии ИС по функциональному назначению делятся на два основных класса — аналоговые (частный случай — линейные) и цифровые. Аналоговые ИС предназначены для усиления, ограничения, частотной филь­трации, сравнения и переключения сигналов, изменяющих­ся по закону непрерывной функции.

Цифровые ИС предназначены для преобразования (обра­ботки) сигналов, изменяющихся по закону дискретной фун­кции (например, выраженных в двоичном или другом циф­ровом коде). Цифровые ИС представляют собой множество транзисторных ключей, обладающих двумя устойчивыми состояниями (разомкнутым и замкнутым). Основным видом цифровых схем являются логические ИС, выполняю­щие одну или несколько логических функций, простейши­ми из которых реализуются такие функции, как «И», «ИЛИ», «НЕ» и др.

Полупроводниковые ИС по конструктивно-технологичес­кому принципу бывают биполярные, т. е. использующие биполярные транзисторы, и МДП, т. е. построенные на МДП-транзисторах. Кристаллом ИС называется структура, содержащая элементы, межэлементные соединения и контактные площадки (металлизированные участки, служащие для присоединения внешних выводов). В большинстве полупроводниковых ИС элементы располагаются в тонком (тол­щина 0,5... 10 мкм) приповерхностном слое полупроводни­ка. Так как удельное сопротивление полупроводника неве­лико (1...10 Ом), а элементы должны быть изолированы друг от друга, необходимы специальные изолирующие области.


6.2. Элементы биполярных полупроводниковых ИС.


Типичная структура полупроводниковой ИС, выполненная по биполярной технологии, показана на рис. 6.1. В такой ИС отдельные элементы, сформированные в «карма­нах» с проводимостью n-типа, оказываются электрически изолированными друг от друга обратносмещенным p-n-переходом, для чего на подложку p-типа кремния подается отрицательный потенциал. Предварительно создаваемые локальные области (называемые «карманами») служат для исключения взаимного влияния активных и пассивных элементов и могут быть изолированы друг от друга кроме p-n-переходом диэлектриком или комбинированным мето­дом с применением p-n-переходов и диэлектрика.

В качестве резисторов в биполярных ИС используют уча­стки однородного полупроводника; в качестве конденсато­ров — обратносмещенные p-n-переходы. Индуктивность не создается в толще полупроводника, а может наноситься в виде спирали из металла на поверхности полупроводника.

Диоды и транзисторы, используемые в ИС, изготовляют по планарной технологии, то есть их выводы находятся на одной поверхности. Планарная технология позволяет в те­чение единого технологического процесса получать одно­временно различные элементы.


Рис. 6.1. Интегральная схема с изоляцией р-n-переходом:

а — электрическая схема; б — топология;

1 — металлическое межсоединение; 2 — слой SiO2;

А, Б, В, — соответствующие друг другу точки на рис. а и б.


При конструировании ИС стремятся применять диоды эквивалентные переходам эмиттер-база или коллектор-база транзисторной структуры. В этом случае диоды изготавливают в едином технологическом цикле с остальными элементами.

Соединение элементов в полупроводниковой ИС может осуществляться несколькими способами, основным из ко­торых является нанесение металлических тонкопленочных проводящих дорожек (чаще всего алюминиевых), изолированных от элементов кристалла слоем диэлектрика, чаще всего оксида кремния SiO2; с помощью проволочных соеди­нений.

Количество кристаллов ИС, получаемых в едином техно­логическом процессе на одной пластине, чаще всего крем­ния, зависит от размера кристалла, в свою очередь завися­щего от количества элементов в схеме, и диаметра пластин. Площадь кристалла ИС в зависимости от ее сложности составляет 1...100 мм2, наиболее распространены размеры 10...50 мм2.


6.3. Элементы ИС на МДП-структуре.


В качестве активных элементов в ИС могут использо­ваться кроме биполярных полевые транзисторы со струк­турой «металл-диэлектрик (оксид)-полупроводник», т.е. МДП-транзисторы или МОП-транзисторы. В соответствии с этим все монолитные ИС разделяются на три основных вида: МДП ИС (МОП ИС), биполярные и биполярно-полевые ИС. МДП ИС могут быть реализованы на транзисторах с каналом p-типа (p-МДП ИС, p-МОП ИС) и каналом n-типа (n-МДП ИС, n-МОП ИС), а также на комплементарных, т. е. использующих одновременно p- и n-типы, МДП-транзисторах (КМДП ИС, КМОП ИС). Биполярно-полевые ИС представляют собой объединенные в одном кристалле биполярные и КМДП ИС (БиКМДП ИС, БиКМОП ИС).

Основными элементами современных МДП ИС являются МДП-транзисторы с каналом n-типа. Площадь этих транзисторов на кристалле значительно меньше, чем биполярных, поэтому в ИС на n-канальных МДП-резисторах достигается самая высокая (в 3-10 раз) степень интеграции, но они уступают биполярным ИС по быстродействию.


 

Рис. 6.2. Схема полевого транзистора с резистором:
а - эквивалентная схема; б - топология МОП-резистора


В комплементарных МДП ИС применяют МДП-транзисторы с ин­дуцированными каналами n- и р-типа, для этих ИС характерна очень малая потребляемая мощность.

МОП-транзистор может использоваться в качестве конденсатора и резистора, при этом значение емкости и сопротивления можно изменять в определенных пределах путем изменения потенциала на управляющем электроде (т. е. на затворе).

В качестве резистора МДП-транзистор используется при Uзи=0, т. е. при этом сопротивление канала имеет наиболь­шее значение. Сопротивление между выводами стока и ис­тока в этом случае обратно пропорционально отношению ширины канала b к его длине L, т. е. b/L. Эта зависимость позволяет проводить расчет топологии для получения необ­ходимого сопротивления резистора.

На рис. 6.2 приведена схема МДП-транзистора, исполь­зуемого в качестве резистора. Структура МДП-конденсатора показана на рис. 6.3. Диэлектриком в этом конденсато­ре является термически выращенная пленка диоксида крем­ния SiO2. Одним из электродов является пленка напыленного металла на SiO2, являющимся диэлектриком, другим — сильнолегированная n+-область кремния, лежащая под оксидом. Высокоомный n-слой и
p-кремний подложки образу­ют изолирующий p-n-переход. Емкость МДП-конденсатора зависит прямо пропорционально площади и обратно пропорциональна толщине оксидной пленки. Уменьшение толщины оксидной пленки для получения емкости большей величины имеет ограничения, так как неоднородность структуры очень тонкой пленки может привести к замыка­нию обкладок конденсатора.


Рис.6.3. МДП-конденсатор


Изготавливают МДП ИС методами планарной техноло­гии. Трудоемкость изготовления МДП ИС на 30% ниже, чем биполярных ИС, так как технологический цикл изго­товления МДП ИС состоит из 22 основных операций, а би­полярных ИС — из 32.


Контрольные вопросы:

1. Дайте определение интегральной схемы.

2. Как различают ИС по технологии изготовления?

3. Расскажите о делении ИС по степени интеграции.

4. Как различают ИС по функциональному назначению?

5. Расскажите об элементах биполярных ИС.

6. Расскажите об элементах ИС на МДП-структурах.

Глава 7. Большие интегральные схемы.


7.1. Общие положения.


Ранее говорилось, что большими интегральными схемами называют полупроводниковые ИС, содержащие более 103 элементов на кристалл.

Развитие современных технологических процессов изго­товления ИС позволяет значительно уменьшать минималь­ные технологические размеры с одновременным увеличе­нием размеров кристалла, т.е. создавать ИС с большой степенью интеграции, называемые большими интегральными (БИС).

БИС являются сложными схемами, реализующими узлы и целые электронные устройства. Различают монолитные и гибридные БИС. Среди монолитных БИС наибольшее распространение получили полупроводниковые БИС на основе МДП-структур, что обусловлено малыми размерами их активных элементов, а также более простой технологией изготовления по сравнению с монолитными БИС на основе биполярных структур.

По функциональному назначению различают БИС, предназначенные для использования в микропроцессорных комплектах в качестве запоминающих устройств, аналого-цифровых и цифровых преобразователей, усилителей и др. БИС явля­ются основной элементной базой микро-ЭВМ, а также ши­роко используются для создания ЭВМ других типов, что обеспечивает повышение их надежности, уменьшение га­баритных размеров и массы, а также существенное сниже­ние потребляемой ими мощности.

То есть по функциональному назначению БИС также могут быть цифровыми, или логическими, и аналоговыми, или линейными. К первым относятся декадные счетчики, накапливающие сумматоры, полные арифметические бло­ки, упоминаемые ранее запоминающие устройства и др.

Специальные БИС для ЭВМ, выполняющие не логичес­кие функции, т.е. аналоговые, имеют очень большую но­менклатуру. К этим БИС можно отнести усилители записи и считывания различных запоминающих устройств (ЗУ), преобразователи уровней, времязадающие схемы, схемы стабилизаторов напряжений, дифференциальные операционные усилители, компарато­ры, усилители индикации и др.

Для преобразования аналоговых сигналов в цифровой эк­вивалент используют аналого-цифровые преобразователи (АЦП), а для обратного преобразования цифровых уровней в аналоговые — цифроаналоговые преобразователи (ЦАП).

АЦП — это электронное устройство, осуществляющее автоматическое преобразование непрерывно изменяющейся аналоговой величины в цифровой код. Процесс аналого-цифрового преобразования в общем случае включает про­цедуры квантования (дискретизация непрерывной вели­чины по времени, уровню или обоим параметрам одновре­менно) и кодирования.

Цифроаналоговый преобразователь (ЦАП) — это элект­ронное устройство, осуществляющее автоматическое пре­образование числовых кодов в эквивалентные им значения какой-либо физической величины. Выходные физические величины чаще всего представляют собой временные интервалы электрического напряжения или тока.

Развитие техники АЦП и ЦАП осуществлялось поэтап­но — от простых наборов ИС, на базе которых конструиро­вали преобразователи, до создания БИС АЦП и БИС ЦАП по различным технологиям.

Отечественной промышленностью серийно выпускались БИС ЦАП типов: К572ПА, К572ПА1, КР572ПА2, К594ПА1, К1108ПА1, К1118ПА1, и БИС АЦП типов: К572ПВ1, К572ПВ2, К1113ПВ1, К1107ПВ1, К1107В2, К1107ПВЗ, К1108ПВ1. Указанные БИС изготовлялись по технологии МОП или биполярной с использованием транзисторно-тран­зисторной логики.


7.2. Микропроцессоры и микропроцессорные комплекты.


Увеличение уровня интеграции ИС и улучшение их тех­нико-экономических характеристик позволили использовать вычислительные устройства во многих областях: от уст­ройств промышленного оборудования и контрольно-испы­тательной аппаратуры до ЭВМ. Процесс применения ИС для построения различной вычислительной техники зна­чительно ускорился с применением микропроцессоров.

Название «микропроцессор» связано с исполнением про­цессора на одном или нескольких кристаллах полупровод­никовой ИС. Микропроцессоры служат главными функци­ональными частями микро-ЭВМ, которые реализуются на БИС. Подготовительным этапом развития микропроцессо­ров стали микрокалькуляторы. Именно на них были отра­ботаны технологические, схемо-технологические и архитек­турные решения, которые широко использовались в даль­нейшем при создании первых микропроцессоров.

Микропроцессор — самостоятельное или входящее в со­став ЭВМ (электронно-вычислительной машины) устрой­ство, осуществляющее обработку информации и управля­ющее этим процессом, выполненное в виде одной или не­скольких БИС. В общем случае в состав микропроцессора

входят: арифметико-логическое устройство (АЛУ), блок уп­равления и синхронизации, запоминающее устройство (ЗУ), регистры и другие блоки.

АЛУ осуществляет обработку поступающей от ЗУ инфор­мации по командам программы, хранящейся постоянно в ЗУ, порядок выполнения которых определяется блоком управления и синхронизации. Исходные данные, промежу­точные и окончательные результаты вычислений содержатся в ЗУ или в специальных регистрах. Часть регистров ис­пользуется для организации выполнения программ.

Как БИС микропроцессоры характеризуются степенью интеграции, потребляемой мощностью, помехоустойчивос­тью, нагрузочной способностью активных выводов, т. е. воз­можностью подключения к данному микропроцессору и дру­гих ИС, технологией изготовления, типом корпуса, устой­чивостью к различным внешним воздействиям.

Как вычислительное устройство микропроцессоры харак­теризуются производительностью, разрядностью обрабатыва­емых данных и выполняемых команд, возможностью увели­чения разрядности, числом команд, количеством внутренних регистров, объемом адресуемой памяти, наличием и видом программного обеспечения, способом управления и др.

Микропроцессоры, используемые в средствах вычислительной техники различного назначения, называются универсальными, а предназначенные для построения какого-либо одно­го типа вычислительного устройства, называются специализированными. К последним относятся микропроцессоры, используемые в микрокалькуляторах.

По структуре микропроцессоры подразделяются на секционированные (как правило, с микропрограммным управлением) и однокристальные (с фиксированной разрядностью и постоян­ным набором команд). Секционированные микропроцессоры обладают способностью к расширению своих функциональных возможностей за счет подключения дополнительных ИС.

Однокристальный микропроцессор с фиксированной раз­рядностью и с постоянным набором команд конструктивно исполняются в виде одной БИС. Такой микропроцессор вы­полняет функции процессора ЭВМ, все операции которого определяются хранящимися в его памяти командами. Осо­бенность однокристального микропроцессора — наличие внутренней шины, по которой происходит обмен информа­цией между устройствами микропроцессора.



Рис. 7.1. Состав микропроцессорного комплекта интегральных схем


По функциональным возможностям микропроцессор со­ответствует процессору ЭВМ, выполненному на 20-40 ИС малой и средней степени интеграции, но обладает большим быстродействием, существенно меньшими размерами, мас­сой, потребляемой мощностью.

Применение различных схемо-технологических методов при изготовлении микропроцессоров позволяет, например, получать на основе
р-МОП-схем до 80 тыс. операций/с, n-МОП-схем — 500...600 тыс. оп/с, КМОП-схем 400 тыс. оп./с, ЭСТЛ-схем — 3 млн. оп/с.

Совокупность конструктивно и электрически совмести­мых ИС, предназначенных для построения микропроцессо­ров, микро-ЭВМ и других вычислительных устройств с оп­ределенным составом и требуемыми технологическими ха­рактеристиками, есть микропроцессорный комплект интег­ральных схем.

Основа микропроцессорного комплекта интегральных схем — базовый комплект, который может состоять либо из одной БИС — однокристального микропроцессора с фик­сированной разрядностью и постоянным набором команд, либо из набора ИС — многокристального секционирован­ного микропроцессора МП (рис.7.1).

Для расширения функциональных возможностей МП базовый комплект дополняется ИС других типов, напри­мер запоминающими устройствами, интерфейсными ИС, контроллерами внешних устройств. Эти ИС могут быть од­ной серии с ИС базового комплекта или разных.



Контрольные вопросы:

1. Какие ИС называют большими? Их деление по конструкции, технологии и функциональному назначению?

2. Дайте определение схем АЦП.

3. Дайте определение схем ЦАП.

4. Какую схему БИС называют микропроцессором?

5. Какие микропроцессоры называют универсальными и специализированными?

6. Расскажите о микропроцессорном комплекте ИС.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.