Рефераты. Комплекс геофизических исследований скважин Самотлорского месторождения для оценки ФЕС и насыщения к...






Далее рассчитывается βо по одной из следующих формул:

       2.10


                  2.11


Определение нефтенасыщенности пород. Новый способ определения насыщения пород по данным АКШ основан на использовании кинематических параметров продольной и поперечной волн в комплексе со стандартными методами ГИС. Физической основой способа является различие сжимаемостей водо-, нефте-, и газонасыщенных пород.

Если сравнивать распределение удельных сопротивлений и изотермических сжимаемостей среди наиболее распространенных минералов и насыщающих флюидов продуктивных коллекторов, то аномальным компонентом в ряду удельных сопротивлений

будет пластовая вода (пониженные значения). Она очень широко дифференцирует породы-коллекторы по характеру насыщения. Трудности обычно возникают при учете влияния минерализации пластовой воды и содержания битума, структуры порового пространства по и содержания битума, структуры порового пространства, глинистости и характера смачиваемости коллектора. В случае сравнения изотермических сжимаемостей, аномально упругим свойством среди компонент нефтяного пласта является сжимаемость подвижной нефти. Битум и вода близки по сжимаемости. Битум, не имеющий, как правило, существенного газового фактора будет отмечаться, как дополнительное водородосодержание. Значительно меньше на результаты влияет минерализация пластовой воды, фактор смачивания, структура порового пространства.

Однако аномально высокой сжимаемостью обладает нефтяной газ в свободной фазе, появляющийся при снижении давления нефти ниже давления насыщения. При наличии нефтяного газа в свободной фазе даже при малом газосодержании существенно изменяются упругие свойства пласта, что легко можно установить качественно по волновой картине, однако в этом случае становится невозможным количественное определение нефтенасыщенности такого пласта по его упругим свойствам.

Однако, несмотря на кажущуюся простоту решения проблемы определения нефтенасыщения пластов, не содержащих свободной газовой формы, высокие требования предъявляются к определению коэффициентов сжимаемости породы в целом, минералов, нефти и газа.

Применяя уравнения 2.8, 2.9 к горной породе, допуская в ней только упругие деформации, можно вычислить сжимаемость породы β, решая уравнение 2.10, 2.11 при условии, что величины υ, E, δ известны из данных эксперимента или обобщенных сведений для различных классов горных пород. В дальнейшем основным объектом исследований при интерпретации данных АКШ становится параметр β, который, является источником информации о емкостных свойствах породы и составе флюидов, насыщающих породу.

Известно полученное теоретическим путем для модели породы, составляющие, которой ведут себя как идеально упругие однородные и изотропные среды, уравнение Ф.Гассмана:

                                                                            2.12


где βо, βcк, βтв,βж соответственно сжимаемости породы, скелета породы, твердой фазы и жидкости (флюида), заполняющие его поры.

Модель Ф.Гассмана не учитывает упругой связи между твердой и флюидальной компонентами, которая присутствует в реальных породах. Для преодоления этого недостатка В.М. Добрынин предложил уравнение:

                                                                       2.13

где μр- коэффициент, учитывающий влияние включений , присутствующих в реальных породах, на упругие характеристики породы.

Коэффициент упругой связи αсв твердой и флюидальной  фаз породы определяется выражением:                                                      

                                           ,           2.14



где βп - коэффициент сжимаемости пор.

На  основании  изложенного,   получено  уравнение  для  коэффициента  объемной сжимаемости породы βо при динамических нагрузках (динамическая сжимаемость):

                  2.15

для газонасыщенных терригенньгх коллекторов сжимаемость породы значительно
меньше сжимаемости флюида, поэтому , αсв=1     , поэтому уравнение 2.15

принимает вид:

    2.16

Для количественной интерпретации используется набор комплексных, параметров зависимость комплексного безразмерного параметра, названного «индексом динамической сжимаемости» (ИДС), от коэффициента водонасыщения пласта. ИДС характеризует соотношение сжимаемостей минералов, пор породы, нефти, газа и воды. Для его определения необходимо знать скорости (интервальные времена) продольных и поперечных волн, пористость и плотность изучаемых отложений.

Основой для расчета кривых служат широко известные теории деформации пористых тел М.Био и Ф.Гассмана, модифицированные В.М.Добрыниным применительно к определению нефтенасыщенности коллекторов. При этом были учтены важнейшие ограничения в применении этих теорий для практических целей.

Получены два семейства кривых для нефтегазонасыщенных пластов: кривые с параметром нефтенасыщенности, изменяющимся к пределах kн= 0-0,8 и кривые с параметром газонасыщенности - kг= 0-0,5.

Одна из кривых получена для условий нефтеводонасыщенного пласта без свободной газовой фазы (kг=0). Он имеет плавный характер и диапазон изменения ИДС достигает 70% при изменении коэффициента водонасыщения от предельной величины kв=kв.о до kв= 100%.

При наличии в порах небольшого количества свободного газа (kг = 0,02 -0,05) кривые для определения kв резко выполаживаются, т.к резко снижается дифференциация пласта по нефтенасыщению. Это делает затруднительным количественные определения нефтенасыщенности. При kг = 0,5 все семейства кривых ИДС =f(kв) устремляется к предельному значению, соответствующему отсутствию упругой связи между флюидом и твердой фазой породы. В этих случаях ИДС может лишь служить очень чувствительным индикатором присутствия свободного газа в нефтенасыщенном пласте.

3. Специальная часть

Информативность метода ВИКИЗ при изучении песчано-глинистых разрезов


3.1.  Основные геолого-геофизические задачи, решаемые методом ВИКИЗ

 

Метод высокочастотных индукционных каротажных изопараметрических зондирований предназначен для исследования пространственного распределения удельного электрического сопротивления пород, вскрытых скважинами, бурящимися на нефть и газ.

Использование метода ВИКИЗ позволяет решать следующие задачи ГИС:

—      расчленение разреза, в том числе тонкослоистого, с высоким пространственным разрешением;

—      оценка положения водонефтяных и газоводяных контактов;

—      определение удельного электрического сопротивления неизмененной части пласта, зоны проникновения фильтрата бурового раствора с оценкой глубины вытеснения пластовых флюидов;

—      выделение и оценка параметров радиальных неоднородностей в области проникновения, в том числе скоплений соленой пластовой воды («окаймляющие зоны»), как прямого качественного признака присутствия подвижных углеводородов в коллекторах.

В отличие от трехкатушечных зондов индукционного каротажа, в которых измеряются абсолютные значения сигналов на фоне скомпенсированного прямого поля, метод ВИКИЗ, базирующийся на измерении относительных фазовых характеристик, мо¬жет использоваться для исследования в скважинах, заполненных сильнопроводящим (УЭС менее 0,5 Ом-м) буровым раствором.

Результаты интерпретации диаграмм ВИКИЗ в комплексе с данными других ме¬тодов ГИС и петрофизической информацией позволяют определять коэффициент неф-тегазонасыщения, литологию терригенного разреза, оценивать неоднородность коллек-торских свойств на интервалах пористо-проницаемых пластов, выделять интервалы уплотненных песчаников с карбонатным или силикатным цементом и др.


3.2. Основы теории.   Сигналы ВИКИЗ в неородных средах

 О фокусирующих системах электромагнитного каротажа

Основная цель электромагнитного (в том числе индукционного) каротажа зак­лючается в возможно более точной оценке удельных электрических сопротивлений пластов. Для достижения этой цели применяются многокатушечные зонды. Параметры зондов выбираются таким образом, чтобы измеряемый сигнал в основном определял­ся УЭС неизмененной части пласта, а влияние скважины и зоны проникновения было относительно небольшим. Такого рода зонды в каротаже принято называть фо­кусирующими.

В индукционном каротаже (частоты до 250 кГц) для проектирования зондов ис­пользуются принципы частотной и геометрической фокусировки, базирующиеся на те­ории обобщенного геометрического фактора. При геометрической фокусировке момен­ты катушек и расстояния между ними подбираются таким образом, чтобы существенно уменьшить вклады (геометрические факторы) скважины и измененной проникновени­ем прискважинной области. Другим, менее распространенным способом фокусировки является измерение двухчастотной разности реальных частей э.д.с. или мнимой состав­ляющей э.д.с. Улучшение радиальных характеристик фокусирующих зондов приводит к увеличению влияния на сигнал вмещающих пород. Особенно это становится заметным, когда мощность пласта сравнима с длиной зонда. Другой особенностью фокусирующих систем является значительное уменьшение уровня измеряемого сигнала. Таким обра­зом, при их проектировании требуется найти компромисс между двумя альтернативны­ми условиями: для улучшения радиальных характеристик необходимо понижать частоту или увеличивать длину зонда, а для улучшения вертикальных характеристик и увеличе­ния измеряемого сигнала необходимо повышать частоту и укорачивать зонд. Все широ­ко используемые зонды индукционного каротажа (6Ф1, 6Ф1М, 8И1.4) спроектированы с учетом этих противоречивых требований.

Принципиально иным является принцип фокусировки переменного электромаг­нитного поля в области высоких частот. Было установлено, что относительная разность амплитуд или фаз, измеренных в двух близко расположенных катушках, очень слабо за­висит от параметров скважины даже на очень высоких частотах (до 15 МГц). Таким об­разом, измерение разности фаз позволяет выполнить сразу два требования: исключить влияние скважины, не утратив при этом хорошего вертикального разрешения. Приме­нение высоких частот приводит к высоким уровням сигналов даже в относительно плохо проводящей (до 120 Ом-м) среде, что расширяет диапазон определяемых удельных электрических сопротивлений.

Разность фаз и ее связь с удельным электрическим сопротивлением однородной изотропной среды. Кажущиеся сопротивления

В высокочастотных методах при измерении относительных характеристик ис­пользуются трехкатушечные зонды. Такой зонд состоит из одной генераторной (Г) и двух измерительных (Ир И2) катушек. Все катушки соосны. Измерительные элементы располагаются по одну сторону от генератора. Генераторная катушка питается перемен­ным гармоническим током

                                      J=J0e-iwt.

Здесь  wкруговая частота, J0— амплитуда, i =  √-1      — мнимая единица. Момент генера­торной катушки Mt определяется током, площадью витка S и количеством витков nt:

Mt = JntS.

Моменты измерительных катушек Мr определяются площадью витка и числом витков п:

Mr = nrS.

Расстояние между центрами генераторной и дальней измерительной И1 катушек называется длиной зонда L1. Относительное расстояние между центрами измеритель­ных катушек  )L\L1 называют базой зонда.

Переменный ток в генераторной катушке возбуждает в однородной проводящей среде переменное электромагнитное поле. Если расстояния между генераторной и из­мерительными катушками существенно превышает их размер (L » √/S ), все катушки можно заменить магнитными диполями. В этом случае магнитное поле в центрах изме­рительных катушек описывается выражением:

Здесь kволновое число, которое связано с параметрами среды следующим соотноше­нием:

                                                                                                                                

В j-й измерительной катушке наводится э.д.с.

Фаза магнитного поля или э.д.с. в измерительной катушке описывается выраже­нием

Эта зависимость является базовой для проектирования изопараметрических зондов. Из представленного выражения видно, что разность фаз в однородной среде будет одинакова и зависит только от УЭС среды, если выполняются два условия:

Трехкатушечные зонды, для которых выполняются эти условия, называются изопараметрическими.

В аппаратуре ВИКИЗ выбраны следующие значения изопараметров:

Где f— частота в Гц.  В однородной среде показания всех зондов ВИКИЗ соответствуют одному значению кажущегося сопротивления, равному УЭС среды (рк=р). Для этих значений изопараметров на рис. 3.1 приведена зависи­мость измеряемойразности фаз )φ от УЭС однородной среды. Как видно из рисунка, существует однозначная связь между величинами )φ и ρ, которая применяется для вве­дения кажущегося сопротивления ρк. Отметим, что в однородной среде показания всех зондов ВИКИЗ соответствуют одному значению кажущегося сопротивления, равному УЭС среды (ρк= ρ).

Поскольку реальные измерения содержат погрешности, проанализируем влия­ние ошибок измерения сигналов на кажущееся сопротивление. Как известно, относи­тельная ошибка определения кажущегося сопротивления δρк связана с относительной ошибкой измерения δ)φ следующим приближенным соотношением:

Величина называется коэффициентом усиления относительной ошибки измерения, ηρчувствительностью измеренного сигнала )φ к сопротивлению среды р.

      


Рис. 3.1. Зависимость разности фаз от удельно­го электрического сопротивления однородной среды

 

Глинистый низкоомный пласт, вскрытый скважиной. Зона проникновения либо мала, либо совсем отсутствует. При расчете кривых учтено, что глины характеризуются высокой диэлектрической проницаемостью, которая может влиять на показания двух коротких зондов. КС для всех зондов, кроме самого короткого, совпадают с истинным сопротивлением пласта. На показания самого короткого зонда влияние оказывает скважина. Хорошо проводящий раствор приводит к завышению КС по отношению к истинному(рис.3.2.).

Уплотненный малопроницаемый высокоомный пласт. Зона проникновения мала либо отсутствует. Влияние скважины проявляется практически на всех зондах.    

Причем проводящая скважина занижает (до 25%) КС по сравнению с истинным(рис.3.3.).

Водонасыщенный коллектор с повышающим проникновением. Кажущее сопротивление двух коротких зондов определяется УЭС зоны проникновения.

УЭС раствора практически не влияет на показания четырех длинных зондов.

Сильно проводящий раствор снижает КС для самого короткого зонда примерно на 7%. Показания двух длинных зондов близки к истинному сопротивлению пласта(рис.3.4).

Нефтенасыщенный коллектор с повышающем сопротивлением. Кривые зондирования отражают истинное распределение УЭС. КС двух коротких зондов рисуют УЭС зоны проникновения. Влияние хорошо проводящего раствора (до 0,02 Омм) проявляется в снижении КС двух коротких зондов на 12%. Показания двух длинных зондов близки между собой и УЭС незатронутой части пласта. В этой ситуации также, как и в предыдущем случае возможно проведение достоверной оценки качества насыщения(рис.3.5.).

Газовый коллектор с понижающим проникновением.    Кривые отражают повышение сопротивления от скважины к неизменной части пласта.

Показания двух коротких зондов близки УС ЗП, в то время как УС двух длинных зондов практически полностью определяют УС пласта(рис.3.6.).

Нефтенасыщенный коллектор с повышающим проникновением и окаймляющей зоной (рис. 3.7). При наличии окаймляющей зоны возможна смена типа кривой зондирования: от монотонной к инвертированной (с экстремумом). При этом кажущиеся сопротивления на коротких зондах существенно ниже, чем УЭС зоны проникновения, но значительно превосходят УЭС окаймляющей зоны. Кажущееся со­противление для длинного зонда совпадает с УЭС пласта.

На рис. 3.8 показаны изменения кривых зондирований при разных положени­ях окаймляющей зоны. По мере удаления окаймляющей зоны от скважины минимум кривой зондирований смещается в область все более длинных зондов. В то же время происходит постепенное увеличение кажущихся сопротивлений для коротких зондов, которые все более приближаются к УЭС зоны проникновения. Окаймляющая зона ди­агностируется минимумом на кривой зондирования. Отметим, что этот признак на­блюдается только при больших контрастах УЭС зоны проникновения и УЭС окаймля­ющей зоны. То есть окаймляющую зону можно выделить на кривых зондирования, если УЭС фильтрата бурового раствора и пластовой воды сильно различаются. На рис. 3.9 приведены кривые зондирования при сравнительно небольшом контрасте ρзп и ρоз. В этом случае кривые становятся монотонно убывающими и на них отсутствует минимум, обусловленный окаймляющей зоной.


Типичные диаграммы.


Одной из основных задач ВИКИЗ – это расчленение разреза.

Уплотненный молопроницаемый пласт в глинистых отложениях. Н=0,8 и 2,4м.

В маломощном (0,8м) пласте УС занижены, т.к. УСк для одного из зондов не выходит за УС пласта. В центральной части мощного пласта показания короткого зонда выходят на постоянное значение, примерно на 20% больше УС пласта. Есть отличие для этих пластов при переходе через кровлю пласта. Они связаны с тем, что  малом пласте есть точки профилирования, в которых генераторные и приемные катушки располагаются в перекрывающих и подстилающих породах. Диаграммы асимметричны относительно центра пласта, по причине несимметричности трехкатушечных зондов. Асимметрия увеличивается для более длинных зондов. Отметим, что если в маломощном пласте макс показания расположены практически на одной глубине, то в мощном расходятся примерно на 0,5 м. УСк на длинном зонде существенно занижено из_ за влияния хорошо проводящих вмещающих отложений (глин) (рис.3.10.).

Уплотненный малопроницаемый пласт, перекрытый глиной и подстилающим водонасыщенным коллектором.  Здесь ВМ отложения отличаются по УС. Диаграммы аналогичны предыдущим, разница лишь в том, что под пластом их УСк выходят на сопротивления водонасыщенного коллектора. Уменьшение влияния ВМ пород по сравнению с предыдущими кривыми  приводит к увеличению УСк для коротких зондов(рис.3.11.).


Рис. 3.10. Диаграммы для модели глина — уплотненный пласт — глина. Длина зонда, м: 0,5 — красный, 0,7 — зеленый, 1,0 — коричневый, 1,4 — синий, 2,0 — черный.

 

Водонасышенный коллектор в глинистых отложениях. Диаграммы несимметричны относительно середины пласта. УСк для длинного зонда даже в маломощном пласте близко к его истинному сопротивлению. Наиболее близкие к УСп значения УСк наблюдаются в интервале над подошвой пласта. Это объясняется, что при таких положениях внутри зонда оказывается большая  или весь исследуемый пласт. Положение кровли пластов хорошо оценивается точкой пересечения диаграмм всех зондов(рис.3.12).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.