|
Таблица 5.2.2
…
…
…
…
…
…
…
…
…
…
…
Если придерживаться максиминной стратегии, то при любом поведении стороны В (конкурента) гарантирован выигрыш, во всяком случае не меньше . Поэтому называют также ценой игры - тот гарантированный минимум, который можно обеспечить при наиболее осторожной (перестраховочной) стратегии.
Очевидно, что аналогичные распределения можно провести и для конкурента В, который должен рассмотреть все свои стратегии, выделяя для каждой из них максимальные значения проигрыша: (последняя строка матрицы).
Из всех значений находят минимальное:
,
которое дает минимаксный выигрыш или минимакс.
Такая -стратегия - минимаксная, придерживаясь которой сторона В гарантировано, что в любом случае проиграет не больше . Поэтому называют верхней ценой игры.
Если , то число С называют чистой ценой игры или седловой точкой.
Для игры с седловой точкой нахождение решения состоит в выборе пары максиминной и минимаксной стратегий, которые являются оптимальными, так как любое отклонение от этих стратегий приводит к уменьшению выигрыша первого игрока и увеличению проигрыша второго игрока по сравнению с ценой игры С.
Однако не все матрицы имеют седловую точку. Тогда решение находят, применяя смешанные стратегии, то есть чередуя случайным образом несколько чистых стратегий (гибкая тактика).
Вектор, каждая из компонент которого показывает относительную частоту использования игроком соответствующей чистой стратегии, называют смешанной стратегией данного игрока.
Из этого определения следует, что сумма компонент этого вектора равна единице, а сами компоненты не отрицательны.
Обычно смешанную стратегию первого игрока обозначают как вектор
, а второго игрока - как вектор , где . (5.1.1).
Если u° - оптимальная стратегия первого игрока, z° - оптимальная стратегия второго игрока, то число - называют ценой игры.
Для того чтобы число - было ценой игры, а u° и z° — оптимальными стратегиями, необходимо и достаточно выполнение неравенств:
, (5.1.2)
. (5.1.3)
Если один из игроков применяет оптимальную смешанную стратегию, то его выигрыш равен цене игры и вне зависимости от того, с какими частотами будет применять второй игрок стратегии, вошедшие в оптимальную, в том числе и чистые стратегии
Внимание к седловым точкам в теории игр традиционно. Объясняется это недоверием к максимину, как к принципу оптимального выбора в том случае, когда нет седловой точки. Поэтому естественно стремление заполнить промежуток между максимином и минимаксом путем применения смешанных стратегий.
Однако, не следует забывать, что:
1) применение смешанных стратегий рисковано, когда игра не повторяется;
2) если игра повторяется, надо иметь уверенность, что у противника нет
информации о конкретных решениях другого игрока;
3) противник не обязан применять смешанные стратегии, равно как и стремиться к
цели, противоположной цели другого игрока.
Обозначим смешанную стратегию первого игрока p = {pi}, где pi - вероятность применения i-й стратегии, , . Пусть смешанная стратегия второго игрока , , qj - вероятность применения j-й стратегии, , . Р и Q определяют математическое ожидание платежа:
.
Теорема фон Неймана. Любая матричная игра имеет седловую точку в смешанных стратегиях.
Доказательство. Множества M и N ограничены и замкнуты, так как , , а функция W непрерывна по P и Q . W линейна по P при фиксированных Q, следовательно, вогнута по P при фиксированных Q. Аналогично W выпукла по Q при фиксированных P. M и N выпуклы.
Действительно, рассмотрим такие и , что , , тогда , .
Складывая, получим .
Кроме того, .
Следовательно, при и
тоже смешанная стратегия.
Применяя фундаментальную теорему, получим то, что требуется доказать:
.
Опираясь на доказанную теорему, можно быть уверенным, что решение игры в смешанных стратегиях всегда существует (если только вообще их можно применять). В теории игр доказывается теорема, указывающая на эквивалентность решения матричной игры в смешанных стратегиях и двойственной задачи линейного программирования.
Пусть Po и Qo оптимальные смешанные стратегии, v - цена игры, тогда
.
Из теорема следует, что
(4)
(5)
.
Обозначим .
Поделим (4) на v , получим
.
Из этой задачи линейного программирования можно получить оптимальные стратегии первого игрока (оперирующей стороны).
Аналогично, если , получится задача линейного программирования для получения оптимальных стратегий второго игрока: .
Игры с природой. Оптимальная стратегия в игре с природой при известном распределении её состояний. Максиминный критерий Вальда выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий минимаксного риска Сэвиджа выбора стратегии в игре с природой при неизвестном распределении её состояний. Критерий пессимизма-оптимизма Гурвица выбора стратегии в игре с природой при неизвестном распределении её состояний.
В случае, когда между сторонами (участниками) отсутствует «антагонизм» (например, в процессе работы предприятий и торговых посредников), такие ситуации называют «играми с природой».
Здесь первая сторона принимает решение, а вторая сторона — «природа» не оказывает первой стороне сознательного, агрессивного противодействия, но ее реальное поведение неизвестно.
Пусть торговое предприятие имеет т стратегий: и имеется n возможных состояний природы: . Так как природа не является заинтересованной стороной, исход любого сочетания поведения сторон можно оценить выигрышем первой стороны для каждой пары стратегий и . Все показатели игры заданы платежной матрицей .
По платежной матрице можно принять ряд решений. Например, оценить возможные исходы: минимальный выигрыш
то есть наименьшая из величин в каждой i-й строке как пессимистическая оценка; максимальный выигрыш – то наилучшее, что дает выбор i-го варианта
При анализе «игры с природой» вводится показатель, по которому оценивают, насколько то или иное состояние «природы» влияет на исход ситуации. Этот показатель называют риском.
Риск при пользовании стратегией и состоянии «природы» оценивается разностью между максимально возможным выигрышем при данном состоянии «природы» и выигрышем при выбранной стратегии .
.
Исходя из этого определения можно оценить максимальный риск каждого решения:
.
Решения могут приниматься по результатам анализа ряда критериев.
Критерий, основанный на известных вероятностных состояниях «природы».
Если известны вероятности состояний «природы» (например, спроса по данным анализа за прошлые годы):
где ,
то в качестве показателя эффективности (рациональности, обоснованности) стратегии берется средний (математическое ожидание) - выигрыш применения этой стратегии:
,
а оптимальной считают стратегию, для которой этот показатель эффективности имеет максимальное значение, то есть
.
Если каждому решению соответствует множество возможных результатов с вероятностями , то среднее значение выигрыша можно определить по формуле
,
а оптимальная стратегия выбирается по условию
.
В этом случае можно воспользоваться и стратегией минимального среднего риска для каждого i-го состояния «природы»
.
Максиминный критерий Вальда предполагает выбор решения, при котором гарантируется максимальный выигрыш в наихудших условиях внешней среды (состояния «природы»):
.
Согласно критерия пессимизма-оптимизма Гурвица при выборе решения вместо двух крайностей в оценке ситуации (оптимум-пессимизм) придерживаются некоторого компромисса, учитывающего возможность как наихудшего, так и наилучшего поведения «природы»:
,
где x - показатель пессимизма-оптимизма (чаще всего 0,5).
Если х = 1 критерий слишком пессимистичный, если х = 0 – слишком отптимистичный.
По критерию минимаксного риска Сэвиджа выбирают ту стратегию, при которой величина риска имеет минимальное значение в самой неблагоприятной ситуации:
чтобы избежать слишком большого риска при выборе решения.
Комплексный анализ всех этих критериев позволяет в какой-то мере оценить возможные последствия принимаемых решений
Модели поведения фирмы в условиях конкуренции. Модель поведения фирмы в условиях совершенной конкуренции. Исследование модели в зависимости от показателя степени однородности производственной функции. Модели поведения фирмы в условиях несовершенной конкуренции. Монополия и монопсония. Конкуренция среди немногих. Олигополия. Модели дуополии.
Поведение фирмы в условиях совершенной конкуренции
Существуют модели:
· Описание общей модели Вальраса
· Модель Эрроу-Дебре. Существование конкурентного равновесия
· Модель регулирования цен и устойчивость конкурентного равновесия
Опишем общие понятия.
Обозначим через S множество
потребителей и в пространстве товаров введем понятие коллективного предпочтения () с помощью следующих аксиом
(некоторые из них соответствуют аксиомам индивидуального предпочтения (см. §3.1 )):
A1) полнота: для любых либо , либо , либо ( - отношение безразличия);
A2) транзитивность: для любых , таких, что , , справедливо ;
A3) единогласие: если для всех , то ;
A4) независимость: для любых из , ,, следует ( - любое отношение).
Обоснование неоспоримости этих аксиом можно найти, например, в книге [ 18 ].
Главный вопрос теперь заключается в том, существует ли отношение предпочтения, удовлетворяющее этим четырем аксиомам? К сожалению, в общем случае ответ будет отрицательным. Более или менее известные способы определения коллективного предпочтения, такие, как "правило большинства", "правило уравновешивания", "правило диктатора" (см. [ 18 ]), во-первых, более применимы в области политики, чем экономики, во-вторых, приводят к нарушению некоторых из аксиом A1-A4. Это вполне понятно. С одной стороны, легче согласовать идеи, чем потребности, с другой - участники экономики поступают главным образом эгоистически, и не существует единственного способа приспособления их потребностей друг к другу. Во избежание неправильных выводов здесь нужно пояснить: сказанное не означает, что в каждом отдельном случае коллектив не придет к соглашению. Речь идет лишь об отсутствии общих адекватных методов получения коллективного предпочтения.
Теперь проанализируем возможность построения коллективной функции полезности, исходя из индивидуальных функций полезности всех потребителей. Последние, как мы видели в §3.2 , вполне реально определяются и существуют. Искомую функцию для потребительского сектора S естественно определить как , где - функция полезности потребителя i . По определению 3.1 , с этой функцией должно быть связано некоторое отношение предпочтения : тогда и только тогда, когда . Оказывается, такое отношение предпочтения удовлетворяет аксиоме единогласия, но противоречит аксиоме независимости (установите это самостоятельно).
Для выявления еще более серьезного возражения против функции представим ее в виде , где , , s - число всех потребителей. Тогда по теореме 3.2 любая функция вида
где , является также функцией коллективной полезности. Положим . Легко видеть, что функция в этом случае порождает отношение предпочтения, дающее приоритетный вес только первому потребителю. Такое отношение предпочтения явно не совпадает с отношением предпочтения, порожденным исходной функцией . Можно доказать, что только в одном случае все функции вида (5.2.1) будут соответствовать одному и тому же отношению предпочтения, а именно, когда выполнено дополнительное условие . Каждому набору коэффициентов из этого условия будет соответствовать своя функция полезности . Возникает новая проблема: какую из этого бесконечно большого числа функций предпочтут потребители?
Страницы: 1, 2, 3, 4, 5, 6, 7, 8
При использовании материалов активная ссылка на источник обязательна.