1 строка
1. Расчетная высота колонны: HP=H+0,15 м=10,8+0,15=10,95 м.
2. Высота верхней части колонны: H2=4,25 м.
3. Расстояние от подкрановой балки до низа фермы:
H2-HПБ=4,25 м-0,8 м=3,45 м.
4. Число рам в температурном блоке – 7.
2 строка
5. Отношение жесткостей рассматриваемой колонны (EI2 – верхняя часть колонны, EI1 – нижняя часть колонны): для крайней рассматриваемой колонны:
Размеры сечений А и В приведены на рис. 4.
7. Отношение нижней части соседней колонны к нижней части рассматриваемой колонны. Для однопролетного здания
3 строка
8. Эксцентриситет оси верхней части колонны:
Положительный эксцентриситет вращает силу относительно центра тяжести нижней подкрановой части колонны по часовой стрелке.
9. Эксцентриситет стены
10. Эксцентриситет подкрановой балки:
при наличии сдвижки
11. Высота сечения надкрановой части колонны: А=0,38 м.
12. Высота сечения подкрановой части колонны: В=0,7 м.
4 строка
13. Постоянная нагрузка от шатра: GШ=191,30 кН.
14. Постоянная нагрузка от стены: GCT=161,73 кН.
15. Постоянная нагрузка от подкрановой балки: GПБ=36,58 кН.
16. Постоянная нагрузка от нижней части колонны: G1K=70,9 кН.
5 строка
17. Нагрузка от снега: S=71,82 кН.
6 строка
18. Вертикальная крановая нагрузка: ДMAX=593,81 кН.
19. То же: ДMIN=160,82 кН.
20. Горизонтальная тормозная сила: T=26,18 кН.
7 строка
Ветровые нагрузки вводятся без учета аэродинамических коэффициентов, так как они учтены в программе.
21. Сосредоточенная ветровая нагрузка: W1=5,55 кН.
22. Равномерно распределенная ветровая нагрузка:
Таблица 4 –
Исходные данные к расчету каркаса
Номер строки
Вводимые параметры
1
10,95
4,25
3,45
7
2
0,160
3
-0,160
-0,50
0,65
0,38
0,70
4
191,30
161,73
36,58
70,9
5
71,82
6
593,81
160,82
26,18
5,55
2,11
IV РАСЧЕТ КОЛОННЫ
4.1. Расчет надкрановой части колонны
4.1.1. Расчетные сочетания усилий
Различают два основных сочетания усилий:
I Сочетание: S=Sg+Sv,
где Sg – усилия (M или N) от постоянных нагрузок; sv – усилия (M и N) от одной из временных нагрузок (крановые вертикальные нагрузки Д и тормозные Т считаются за одну нагрузку).
II Сочетание:
где - сумма усилий от любых временных нагрузок (не менее двух).
В пределах каждого сочетания надо учесть возможность трех комбинаций усилий:
1) Наибольшее значение +М и соответственно N.
2) Наибольшее значение |-М| и соответственно N.
3) Наибольшее значение N и соответственно M.
Таблица 5 –Усилия над консолью
Наименование нагрузки
Шифры В.Н.
М, кНм
N, кН
Постоянная
-33,180
+191,300
Снеговая
-4,348
+71,820
Дmax
+130,822
0
Дmin
+54,762
Дmax+Торм.
+150,62
Дmax-Торм.
+111,024
Дmin+Торм.
+74,56
Дmin-Торм.
8
+34,964
Ветер слева
13
-28,603
Ветер справа
14
+31,098
Результат подсчета усилий представлен в таблице 6.
Таблица 6
Расчетные сочетания усилий над консолью
№
Комбинация
усилий
M,
кНм
N,
кН
MЯДР, кНм
Внешняя
грань
Внутренняя грань
I Основное сочетание
При +Mmax (1+5)
117,44
191,300
129,492
+
105,388
-
При -Mmax (1+13)
-61,783
-49,731
-73,835
При Nmax (1+2)
-37,528
263,120
-20,951
-54,105
II Основное сочетание
При +Mmax (1+0,9(5+14))
130,366
142,418
118,314
При -Mmax (1+0,9(2+13))
-62,836
255,938
-46,712
-78,960
При Nmax (1+0,9(2+5+14))
126,453
142,667
110,419
Значение ядрового момента определяется по формуле:
- при положительном моменте (+М)
- при отрицательном моменте (-М)
Ядровое расстояние:
4.1.2 Определение коэффициента продольного изгиба
Подбираем арматуру в сечении над консолью по сочетанию усилий и проверяем прочность по сочетанию.
Исходные данные: М=126,45 кНм; N=255,94 Кн; класс бетона – В 15; RB=8,5 МПа; ЕВ=20500 МПа; класс арматуры А-II; RS=280 МПа; размеры сечения: h=0,38 м, b=0,4 м.
Свободная длина надкрановой части колонны:
где как для здания с мостовыми кранами при разрезных подкрановых балках, с учетом нагрузки от кранов.
Так как гибкость
требуется учитывать продольный изгиб колонны.
Эксцентриситет силы
Случайные эксцентриситеты:
Так как система статически неопределима, принимаем наибольшее значение: е0=0,494 м.
Критическая сила определяется по формуле:
где - учитывает влияние длительного действия нагрузки:
где М – момент силы N относительно растянутой или менее сжатой арматуры сечения от всех нагрузок:
- то же, от постоянной и длительной части снеговой нагрузки:
здесь
где - определяется по СНиП 2.01.07 – 85* Нагрузки и воздействия в зависимости от снегового района; - коэффициент сочетания. Тогда:
Далее находим коэффициент:
- коэффициент, принимаемый равным но не менее
I – момент инерции сечения бетона:
Is – момент инерции сечения арматуры при симметричном армировании и коэффициенте (согласно СНиП 2.03.01 – 84 табл.38 и при 35<<83):
Коэффициент продольного изгиба определяется по формуле:
4.1.3 Подбор сечения арматуры надкрановой части колонны
Надкрановая часть колонны имеет несимметричное армирование. Так как изгибающий момент положительный (М=126,45 кНм), то растянутая арматура Аs расположена у внутренней грани колонны. В связи с тем, что считаем, что имеет место случай больших эксцентриситетов. h0=h-a=0,38-0,04=0,34 м, e0=0,494 м.
Из условия минимального процента армирования:
Минимальный диаметр арматуры в сборных колоннах составляет 16 мм.
Принимаем 2Æ25 с
Также принимаем 3Æ36 с
Рис. 10 - Схема армирования надкрановой части колонны для 1-го сочетания усилий
Исходные данные: М=-62,84 кНм; N=255,94 Кн; класс бетона – В 15; RB=8,5 МПа; ЕВ=20500 МПа; класс арматуры А-II; RS=280 МПа; размеры сечения: h=0,38 м, b=0,4 м.
где как для здания с мостовыми кранами при разрезных подкрановых балках, без учета нагрузки от кранов.
Так как система статически неопределима, принимаем наибольшее значение: е0=0,246 м.
Is – момент инерции сечения арматуры при симметричном армировании и коэффициенте (согласно СНиП 2.03.01 – 84 табл.38 и при >83):
Подбор сечения арматуры надкрановой части колонны
Надкрановая часть колонны имеет несимметричное армирование. Так как изгибающий момент отрицательный (М=-62,84 кНм), то растянутая арматура Аs расположена у внешней грани колонны. В связи с тем, что считаем, что имеет место случай больших эксцентриситетов.
h0=h-a=0,38-0,04=0,34 м.
e0=0,246 м.
Принимаем 2Æ16 с
Принимаем 2Æ36 с
Окончательно принимаем армирование надкрановой части по следующей схеме:
Рис. 11 – Схема армирования надкрановой части колонны для 2-го сочетания усилий
Рис.12 – Схема армирования надкрановой части колонны
Проверим несущую способность надкрановой части колонны по комбинации усилий с максимальным ядровым моментом:
- наиболее сжата внешняя грань колонны
M=126,45 кНм, N=255,94 кН.
е0=0,494 м.
Условие удовлетворяется.
Рис.13 – Схема армирования надкрановой части колонны
4.2 Расчет арматуры подкрановой части колонны
Наибольшие ядровые моменты находятся у фундамента. Так как разница между их значениями меньше 20 %, то армирование подкрановой части колонны будет симметричным.
- наиболее сжата внутренняя грань.
Исходные данные: М=-245,85 кНм; N=1059,58 Кн; класс бетона – В 15; RB=8,5 МПа; ЕВ=20500 МПа; класс арматуры А-II; RS=280 МПа; размеры сечения: h=0,7 м, b=0,4 м.
Свободная длина подкрановой части колонны:
Так как система статически неопределима, принимаем наибольшее значение: е0=0,232 м.
Подбор сечения арматуры подкрановой части колонны
Подкрановая часть колонны имеет симметричное армирование. Так как изгибающий момент отрицательный (М=-245,85 кНм), то растянутая арматура Аs расположена у внешней грани колонны. В связи с тем, что считаем, что имеет место случай больших эксцентриситетов. h0=h-a=0,38-0,04=0,34 м, e0=0,232 м.
Принимаем 2Æ20 с
Проверка несущей способности:
h0=h-a=0,70-0,03=0,67 м
е0=0,232 м.
- проверка удовлетворяется.
Проверка по растянутой грани:
Проверяется комбинация с Mядр=160,65 кНм, M=231,26 кНм, N=605,25 кН.
4.3 Расчет консоли колонны
Основные размеры консоли даны в табл.1
Исходные данные (рис.10):
Рис. 15 – Расчетная схема консоли
hb=380 мм; с=840 мм; hн=700 мм; d=600 мм; e=520 мм; lsup=340 мм.
В15; Rb=8,5 МПа; Eb=20500 МПа; Rbt=0,75 МПа.
Арматура А-II, Rs=280 МПа, Es=210000 МПа.
Условие прочности:
где
Принимаем хомуты Æ10 мм (Asw=0,785 см2) и шаг Sw=150 мм:
(и
Из рис.10 следует:
где f=52 – 5=47см;
тогда
Правая часть условия принимается не более
и не менее меньшего из 2-х значений:
Таким образом, принимаем правую часть равной 1258,95 кН, тогда проверка прочности 1258,95 кН удовлетворяется. Расчет окамляющих стержней:
Принимаем 2Æ32 А-II с Аs=16,08 см2.
V РАСЧЕТ БЕЗРАСКОСНОЙ ФЕРМЫ
5.1 Геометрические размеры фермы и поперечные сечения элементов
Применяется безраскосная ферма с пролетом 18 м.
Тип опалубки – II
Рис.16 – Геометрическая схема безраскосной фермы пролетом 18 м
Сетка колонн 6х18 м, нагрузка на 1 м2 покрытия составляет 3,23+1,33=4,56 кН/м2, в том числе снег – 1,33 кН/м2. Этой нагрузке соответствует 2-й тип опалубки.
Унифицированные размеры поперечных сечений элементов фермы:
Размеры сечений b x h, м
Верхний пояс – 0,24х0,25
Нижний пояс – 0,24х0,28
Стойки – 0,24х0,25
5.2 Статический расчет фермы
Статический расчет безраскосных ферм производится на ЭВМ по программе MKEG для статически неопределимых систем. Шифр фермы складывается из величин: обозначения – KGK, пролета фермы и типа опалубки.
Исходные параметры расчета стержневой системы (фермы):
1. Количество элементов - 17;
2. Количество закрепленных узлов – 2;
3. Всего узлов – 12;
4. Шифр фермы – KGK 18-2;
5. Количество загруженных узлов – 2;
Страницы: 1, 2, 3